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Abstract. We used an adjoint version of the process-based Terrestrial Ecosystem Model (TEM) to

optimize the model parameters in a spatially explicit manner by assimilating satellite-based estimates of

gross primary production (GPP) in the conterminous United States. Traditionally, terrestrial ecosystem

model parameterization is conducted at site-level for various plant functional types (PFTs). The optimal

parameters are then extrapolated to regions that have the same plant functional types as parameterized.

However, site-level parameterization might be only valid within a few kilometers in the footprint of the

individual site. Extrapolation of the optimal parameters to a region with an assumption that the parameters

are the same for all pixels for the same ecosystem type in the region may introduce significant errors in

quantification of regional carbon dynamics. This study used Moderate Resolution Imaging Spectroradi-

ometer GPP to optimize parameters for each pixel using adjoint method in a spatially explicit manner. The

spatially explicit parameters were then used to quantify the regional carbon fluxes from 2000 to 2005. The

estimated net ecosystem production (NEP) was used to drive a global atmospheric transport model, GEOS-

Chem, to estimate the near surface atmospheric CO2 concentrations, which were then compared with flask

measurements. We found that (1) the site-level TEM parameterization method provided good estimates of

carbon fluxes at site levels, but had a large uncertainty in the regional simulations; (2) the spatially explicit

parameterization improved the estimates of the spatial distribution and seasonal variation of regional

carbon dynamics; and (3) when driven with the NEP estimated with the spatially explicit model, the GEOS-

Chem captured the seasonal trend of near-surface CO2 concentrations better than that was driven with the

estimates based on the site-level parameterized model. This study suggested that future quantification of

regional carbon dynamics should consider the spatial variation of parameters, which could be optimized

using spatially explicit carbon flux data.
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INTRODUCTION

Atmospheric CO2 has increased significantly

since pre-industrial times due to human activities

such as fossil fuel emissions and land-use and

land-cover changes (Forster et al. 2007). There

has been great progress in the understanding of

spatial distribution and temporal evolution of
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natural and anthropogenic CO2 sources and
sinks on regional and global scales (Yevich and
Logan, 2003, van der Werf et al. 2006, Takahashi
et al. 2009, Andres et al. 2011). However, the
existing quantification of the sink and source
activities and the ecosystem models still has great
uncertainties. To date, two major techniques
including atmospheric inverse modeling (top-
down approach) and biogeochemical modeling
(bottom-up approach) are used to estimate the
net carbon exchanges between the atmosphere
and terrestrial ecosystems. The top-down ap-
proach uses atmospheric transport and chemistry
models and observed atmospheric CO2 concen-
tration data to estimate the regional carbon fluxes
(e.g., Kaminski et al. 1999a, Kaminski et al. 1999b,
Gurney et al. 2002, Kaminski et al. 2002, Law et
al. 2008). This approach can hardly reveal
insights of the ecosystem processes at high
temporal and spatial resolutions, thus limit its
prognostic capability in predicting terrestrial
carbon fluxes. In contrast, bottom-up biogeo-
chemical models have been widely used for
modeling ecosystem processes and carbon and
nitrogen dynamics (e.g., Running and Coughlan
1988, Raich et al. 1991, McGuire et al. 1992,
Melillo et al. 1993, Filed et al. 1995, Luo et al.
2003, Zhuang et al. 2003, Wang et al. 2009).
However, model sensitivity and uncertainty
studies have shown that estimations of carbon
fluxes using biogeochemical models are also of a
large uncertainty due to uncertain model struc-
ture, parameterization, and forcing data (e.g.,
Tang and Zhuang 2008, Tang and Zhuang 2009),
in particular, the accuracy of model parameters is
an important source of uncertainty (Zaehle et al.
2005, Alton et al. 2007).

To this end, data assimilation (DA) is an
effective tool to improve ecosystem model
parameter estimation and quantify model uncer-
tainty (Raupach et al. 2005, Luo et al. 2011).
Various DA methods have been used extensively
to improve the model predictability. One group
of methods is based on Monte Carlo simulation
and Bayesian inference approaches (e.g., Bras-
well et al. 2005, Knorr and Kattge 2005, Xu et al.
2006, Ricciuto et al. 2008a, Ricciuto et al. 2008b,
Tang and Zhuang 2008, Tang and Zhuang 2009).
For example, Ricciuto et al. (2008a, 2008b)
employed a Markov Chain Monte Carlo
(MCMC) calibration technique to derive posteri-

or probability density functions (PDFs) of model
parameters, estimate the optimal values and
uncertainties of the parameters that control
carbon cycling. Kalman filter (KF) is another
approach to calibrate model parameters and state
variables by assimilating observational data
(Kalman 1960). Different implementations of
basic Kalman filter have been employed in
ecosystem modeling studies. For example, the
extended Kalman filter (EKF) (Carmillet et al.
2001, Hoteit et al. 2003) has been applied to data
assimilation of non-linear marine biogeochemical
models by linearizing the dynamic model oper-
ator and observation model operator. The en-
semble Kalman filter (EnKF) (Evensen 1994,
Reichle et al. 2002, Mo et al. 2008, Quaife et al.
2008, Gao et al. 2011) is a popular variant of basic
KF. This method is favorable for complex
ecosystem models that have a large number of
variables to be optimized, since the error
covariance matrix is approximated using ensem-
ble model runs rather than being explicitly
calculated. Another commonly used DA tech-
nique is the adjoint method. Adjoint approaches
have been well used in the area of numeric
weather forecast data assimilation system (Cacu-
ci 1981a, Cacuci 1981b), atmospheric transport
modeling (Kaminski et al. 1999a, Kaminski et al.
1999b), and ocean general circulation modeling
(Marotzke et al. 1999, Li and Wunsch 2003, Li
and Wunsch 2004). It is a powerful tool that can
efficiently calculate the sensitivity and estimate
the parameters of ecosystem models (Rayner et
al. 2005, Tjiputra et al. 2007, Senina et al. 2008,
Tjiputra and Winguth 2008, Kuppel et al. 2012,
Kato et al. 2013).

Current DA techniques have been mostly
applied to site-level parameterization. Conse-
quently, with improved parameters, the biogeo-
chemical models work well at site levels.
However, the site-level parameterizations may
only work at the site or a small region ranging
from hundred meters to a few kilometers
(Schmid 1994, Baldocchi 2003). For regional
simulations, a conventional way is to divide a
region into grid cells, conduct parameterizations
at representative sites for each plant functional
type, and then apply the parameters according to
PFTs to all grid cells (e.g., Running and Coughlan
1988, Raich et al. 1991, Parton et al. 1993, Potter et
al. 1993). This approach does not account for
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spatially-varied parameters for ecosystems due
to the variation of their structure (Bondeau et al.
1999), stand ages (Gower et al. 1996, Pregitzer
and Euskirchen 2004, Zaehle et al. 2006, He et al.
2012), and species leaf longevity (Kitajima et al.
1997). To consider these spatial heterogeneities in
parameterization, assimilating spatially explicit
data into model for each grid cell has been shown
as a good approach. For example, Zhou et al.
(2009) assimilated global soil organic carbon
(SOC) data (Global Soil Data Task 2000) into
the Carnegie-Ames-Stanford-Approach (CASA
model) (Potter et al. 1993) to estimate the spatial
pattern of soil respiration parameter Q10 at a 18

by 18 resolution. They demonstrated that the
spatial heterogeneous Q10 parameterization
could improve the quantification of global soil
respiration. Zhou and Luo (2008) employed the
Terrestrial Ecosystem Regional model (TECO-R)
to simulate carbon uptake combining NPP
increase data and carbon residence time. Specif-
ically, they compared the modeled carbon uptake
that assuming a uniform NPP increase with that
using actual spatial pattern of NPP increase.
Their study highlighted the importance of spatial
pattern of NPP increase in modeling the regional
carbon uptake. However, model parameters
controlling the carbon residence time were not
optimized in a fully spatially explicit manner.
Chen and Zhuang (2012) utilized multiple
databases of carbon pools and fluxes to advance
TEM parameterization to a spatially explicit
manner. However, the model parameters were
calibrated based on annual observed carbon
fluxes data. Thus, the optimal parameters might
not be able to capture the seasonal dynamics of
carbon fluxes. In this study, we make a step
forward to assimilate monthly observations into
an adjoint TEM to improve model parameteriza-
tion in a spatially explicit manner so as to
improve the quantification of seasonal carbon
dynamics in the conterminous U.S. region.

The specific goal of this study is to improve
quantification of the carbon dynamics of terres-
trial ecosystems in the conterminous United
States using different parameterization ap-
proaches. The regional simulations of carbon
fluxes are further evaluated by combining both
top-down and bottom-up approaches and flask
measurements of atmospheric CO2 data. Specif-
ically, two parameterization methods are used:

(1) Using site-level Ameriflux data (Baldocchi et
al. 2004, Bond-Lamberty et al. 2005, Hagen et al.
2006, Urbanski et al. 2007, Sulman et al. 2009) to
parameterize TEM for each PFT and extrapolate
the optimal parameters to the region; (2) Using
MODIS GPP product (Running et al. 2004, Zhao
et al. 2005, Heinsch et al. 2006, Zhao et al. 2006,
Mu et al. 2007) to parameterize TEM for each
grid cell (0.58 by 0.58) and use parameters to
simulate the carbon budget over the contermi-
nous U.S. Both methods are based on a well-
developed adjoint version of TEM (Q. Zhu and
Q. Zhuang, unpublished manuscript). To evaluate
the goodness of the simulated NEP, we conduct-
ed two sets of GEOS-Chem CO2 simulations
(Suntharalingam et al. 2003, Suntharalingam et
al. 2004, Suntharalingam et al. 2005, Nassar et al.
2010) to estimate the seasonal variation of surface
atmospheric CO2 concentrations, driven with
NEP simulated with two parameterization meth-
ods. The modeled seasonality of surface CO2

concentrations was compared with flask mea-
surements at various locations in the contermi-
nous U.S. (Herbert et al. 1986, Komhyr et al. 1989,
Thoning 1989, Bakwin et al. 1995, Masarie and
Tans 1995, Masarie et al. 2001, GLOBALVIEW-
CO2 2012).

METHODS

Terrestrial Ecosystem Model (TEM) and data
The Terrestrial Ecosystem Model (TEM) is a

process-based biogeochemical model, first devel-
oped by Raich et al. (1991) and further improved
on both physical and biogeochemical mecha-
nisms (McGuire et al. 1992, Melillo et al. 1993,
Zhuang et al. 2003). TEM is a large-scale model
forced with spatially explicit data of climate
including precipitation, air temperature and solar
irradiance and data on elevation, soils, and PFTs.
It has been used to quantify regional (e.g., Raich
et al. 1991) and global (e.g., Melillo et al. 1993)
terrestrial ecosystem carbon dynamics at a
monthly time step. Carbon fluxes between
ecosystems and the atmosphere are estimated
in terms of GPP (gross primary productivity),
NPP (net primary productivity, defined as the
difference between GPP and autotrophic respira-
tion) and NEP (net ecosystem productivity,
defined as the difference between GPP and total
ecosystem respiration, including both autotro-
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phic and heterotrophic respiration). TEM algo-
rithms are based on the interactions among five
pools, which are vegetation carbon (Cv), soil
carbon (Cs), vegetation nitrogen (Nv), soil nitro-
gen (Ns) and soil available inorganic nitrogen
(Nav). The interactions among these pools form a
complex nonlinear system, describing the terres-
trial ecosystem carbon and nitrogen dynamics
and the C-N feedbacks (McGuire et al. 1992). The
soil thermal dynamics module (Zhuang et al.
2001, Zhuang et al. 2002) was incorporated into
TEM to account for the effects of soil thermal
dynamics on carbon and nitrogen cycling
(Zhuang et al. 2003).

In this study, seven types of data are used,
including atmospheric CO2 concentrations, based
on the observations at Mauna Loa, Hawaii
(Conway et al. 1994, Masarie and Tans 1995),
precipitation, solar radiation and air temperature
(New et al. 1999, New et al. 2000, Mitchell et al.
2002, New et al. 2002, Mitchell et al. 2004), soil
texture, elevation and PFTs (Raich et al. 1991,
Zhuang et al. 2003). Model calibration data are
from the AmeriFlux network and Moderate
Resolution Imaging Spactro-radiometer (MODIS)
observation product. The AmeriFlux network
observes high frequency surface carbon, water
and energy fluxes (Baldocchi et al. 2001) and
provides level-4 monthly aggregated GPP and
NEP. Eddy flux techniques directly measure NEP
and GPP is derived from the observed NEP by
subtracting daytime total ecosystem respiration
(RESP), which is extrapolated from nighttime
observed RESP with a temperature response
function (Reichstein et al. 2005). Five eddy flux
sites with high quality of data are selected in this
study, covering the major representative PFTs
over the conterminous U.S. (Table 1). Specifically,

Howland Forest main (45.20N, 68.74W) (Hagen
et al. 2006, Richardson et al. 2006), Harvard
Forest main (42.54 N, 72.17 W) (Urbanski et al.
2007, van Gorsel et al. 2009), Vaira Ranch (38.41
N, 120.95 W) (Baldocchi et al. 2004, Baldocchi et
al. 2005), Lost Creek (46.08 N, 89.98 W) (Yuan et
al. 2007, Sulman et al. 2009) and UCI_1850 (55.88
N, 98.48 W) (Bond-Lamberty et al. 2005, Goulden
et al. 2011) are used to parameterize for
temperate coniferous forest, temperate deciduous
forest, grassland, shrub land, and boreal forest,
respectively. The optimal parameters are extrap-
olated to the conterminous United States.

For site-level parameterization, we used both
GPP and NEP data. Although GPP data is
derived based on the NEP observations using
an empirical model (Reichstein et al. 2005), our
previous research indicated that GPP provided
important constraints on model parameters. If
only NEP data are used in calibration, TEM
modeled GPP and ecosystem respiration could
be both over- or under-estimated, while the
simulated NEP is acceptable compared with
observational NEP. By using both NEP and
GPP, both photosynthesis and ecosystem respi-
ration are constrained and TEM parameters are
consequently improved (Tang and Zhuang 2009).

For spatially explicit model parameterization
and verification, we used the MOD17 GPP
product from 2000 to 2005. MOD17 (Monteith
1972, Running and Coughlan 1988) provides 8-
day interval composite GPP estimates (Running
et al. 2004, Zhao et al. 2005, Heinsch et al. 2006,
Zhao et al. 2006, Mu et al. 2007). The MOD17
algorithm is an empirical relationship that uses
the absorbed photosynthetically active radiation
(APAR) to predict GPP, where APAR is an
estimation based on MODIS remotely sensed

Table 1. Description of AmeriFlux flux sites used for traditional site-level TEM parameterization.

Site Vegetation type Available data Principal Investigator(s) Source

Howland Forest Main Temperate coniferous forest 1996–2004 Hollinger D. Y. Hagen et al. 2006,
Richardson et al. 2006

Harvard Forest Temperate deciduous forest 1992–2006 Munger J. W. Urbanski et al. 2004,
van Gorsel et al. 2009

Vaira Ranch Grassland 2001–2007 Baldocchi D. D. Baldocchi et al. 2004,
Baldocchi et al. 2005

Lost Creek Shrub land 2001–2005 Bolstad P.
Cook B.
Desai A.

Yuan et al. 2007,
Sulman et al. 2009

UCI_1850 Boreal forest 2002–2005 Goulden M. L. Bond-Lamberty et al. 2005,
Goulden et al. 2011
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fraction of photosynthetically active radiation
absorbed by vegetation (fPAR) (Knyazikhin et
al. 1999). MOD17 makes the spatially explicit
model parameterization possible because the
MODIS-derived fPAR captures the spatial distri-
bution of the unique characteristics of terrestrial
ecosystems for each grid cell.

Site-level and spatially explicit
parameterization

An adjoint version of TEM (Q. Zhu and Q.
Zhuang, unpublished manuscript) has been devel-
oped based on the general rules of adjoint code
construction (Giering and Kaminski 1998). The
gradient of a target variable with respect to
model parameters (rpg) could be calculated
with:

rpg ¼ ð]g1

]p
ÞT � . . . � ð ]gi

]gi�1

ÞT � . . . � ð ]gn

]gn�1

ÞT ð1Þ

where T refers to the transposition. Eq. 1
aggregates all the intermediate results of trans-
position of the Jacobian Matrix (]gi/]gi�1)

T (i
starts from n to 1) to get the gradient of the TEM

output g with respect to the model parameter p.
The gradient from Adjoint-TEM was then used to
estimate the decreasing direction of the cost
function J (Eq. 2):

J ¼ Jobs þ Jprior ð2Þ
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XN

i¼1

ðFiðxÞ � yiÞTR�1ðFiðxÞ � yiÞ ð3Þ
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X26
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ðru
i Þ

2
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In the Jobs part of cost function (Eq. 3), x is the
vector of model parameters (Table 2), Fi(x) is the
observation operator that maps parameters x to
observation space at the ith time step, yi is the
vector of carbon flux observations at the ith time

step. Specifically, yi is
GPPi

NEPi

� �
for site-level

parameterization that uses AmeriFlux GPP and
NEP; and yi ¼ [GPPi] for spatially explicit

Table 2. Parameters involved in this study.

ID Abbreviation Definition Units
Lower
bound

Upper
bound

1 Cmax Maximum rate of photosynthesis C g m�2 mon�1 50 1500
2 KI Half saturation constant for PAR used by plants J cm�2 d�1 20 600
3 KC Half saturation constant for C02-C uptake by plants l L L�1 20 600
4 Tmax Maximum temperature for GPP 8C 25 35
5 Tmin Minimum temperature for GPP 8C �12 �1
6 Topt Maximum optimum temperature for GPP 8C 15 25
7 ALEAF Coefficient A to model the relative photosynthetic capacity of

vegetation
None 0.1 1.0

8 BLEAF Coefficient B to model the relative photosynthetic capacity of
vegetation

None 0.1 1.0

9 CLEAF Coefficient C to model the relative photosynthetic capacity of
vegetation

None 0.0 0.5

10 MINLEAF Minimum photosynthesis capacity of vegetation None 0.2 0.8
11 Nmax Maximum rate of N uptake by vegetation mg m�2 mon�1 50 700
12 Kn1 Half saturation constant for N uptake by vegetation g m�3 0.5 10
13 RAQ10A0 Leading coefficient of the Q10 model for plant respiration None 1.350 3.3633
14 RAQ10A1 First order coefficient of the Q10 model for plant respiration 8C�1 �0.054577 �0.051183
15 RAQ10A2 Second order coefficient of the Q10 model for plant respiration 8C�2 0.0022902 0.0024381
16 RAQ10A3 Third order coefficient of the Q10 model for plant respiration 8C�3 �0.0000417 �0.0000397
17 KDC Heterotrophic respiration rate at 08C g g�1 mon�1 0.0005 0.007
18 RHQ10 Change in heterotrophic respiration rate due to 108C

temperature change
None 1 3

19 MOISTMAX Maximum soil moisture content for heterotrophic respiration % 80 100
20 MOISTMIN Minimum soil moisture content for heterotrophic respiration % 20 80
21 MOISTOPT Optimum soil moisture content for heterotrophic respiration % 0 20
22 Nup Ratio between N immobilized and C respired mg g�1 5 100
23 Kn2 Half saturation constant for N uptake by organisms g m�3 0.5 1.0
24 CFALL Proportion of vegetation carbon loss as litterfall monthly g g�1 mon�1 0.0001 0.015
25 NFALL Proportion of vegetation nitrogen loss as litterfall monthly g g�1 mon�1 0.003 0.012
26 KRC plant respiration rate at 08C g g�1 mon�1 10�7.5 10�1.5
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parameterization, which uses MODIS GPP prod-
uct. N denotes the total number of time steps
over assimilation time window. R�1 is the inverse
of observation error covariance matrix. Jprior, part
of the cost function (Eq. 4), characterizes the
deviation between the updated parameters xi and
our prior knowledge including parameters upper
bound xu

i and lower bound xl
i (Table 2). Jprior

provides a feasible way to incorporate the
knowledge about parameter empirical upper
bound and lower bound into J, and more
importantly still preserves the convexity of the
cost function J (Schartau et al. 1999). A parameter
that falls into the empirical range ½ xl

i xu
i � has no

effect on J. Conversely, any parameter that falls
out of its empirical range would be panelized by
enhancing Jprior. rl

i and ru
i are set to 0.0001% of xl

i

and xu
i , respectively, in order to ensure the

estimated parameters are constrained within
their bounds.

Since the cost function is convex, the minimal
point could be iteratively found. The adjoint
version of TEM supplies the gradient of the cost
function with respect to parameters (rpJ ) in each
iteration. The gradient descent algorithm (Natvik
et al. 2000) that minimizes the cost function and
optimizes model parameters is used (Eq. 5):

xnew ¼ x � arpJ ð5Þ

Where xnew is the vector of updated parameters
in each iteration, x is the vector of parameters in
previous iteration. a is the step size. Twenty-six
model parameters were calibrated in this study.
Table 2 has a detailed description for each model
parameter including prior knowledge such as
maximum and minimum values (Tang and
Zhuang 2009).

Two types of model simulations were con-
ducted with different parameterization meth-
ods. For traditional site-level parameterization
and extrapolation (hereafter referred to as site-
TEM), we used GPP and NEP data to calibrate
the model. Specifically, Howland Forest Main
site’s six years data (1996–2001) were used to
calibrate temperate coniferous forest. Six years
data (1992–1997) from Harvard Forest site were
used to constrain temperate deciduous forest.
Vaira Ranch data (2001–2003) were used to
calibrate grassland. Lost Creek data (2001–2003)
were used for shrub land parameterization and
UCI_1850’s three-year data (2002–2004) were

used for boreal forest calibration. The rest of
AmeriFlux data at each site was used to
evaluate the performance of the model. The
optimal parameters were then extrapolated to
the conterminous United States. Each PFT
shares the same set of optimal parameters in
the region.

The second type of simulations was base on
the spatially explicit parameterization method
(hereafter referred to as spatial-TEM). We used
(2000–2004) monthly MODIS GPP product (Zhao
et al. 2005) to parameterize TEM for each 0.58 by
0.58 resolution grid cell. The MODIS GPP
product of year 2005 was used for model
verification. The spatially explicit parameters
were then used to quantify carbon dynamics in
the conterminous U.S. from 2000 to 2005.

Model evaluation
We compared the simulations of site-TEM

and spatial-TEM with satellite-based GPP of
year 2005. We examined the spatial differences
and their seasonality of the simulated GPP with
two methods for different PFTs. For NEP, there
is no regional observational data for direct
comparison. We therefore indirectly evaluated
the simulations using a coupled top-down and
bottom-up approach. Specifically, we fed the
estimated NEP into an atmospheric transport
model, GEOS-Chem (Suntharalingam et al.
2003, Suntharalingam et al. 2004, Suntharalin-
gam et al. 2005, Nassar et al. 2010) to estimate
the temporal evolution and spatial distribution
of near surface CO2 concentrations. We then
compared the flask observations and the mod-
eled surface CO2 concentrations from GEOS-
Chem. To evaluate the NEP over the contermi-
nous United States, we also conducted the
spatially explicit model parameterization and
NEP simulations for other regions beyond the
United States. Therefore in GEOS-Chem simu-
lations, only NEP over the conterminous United
States was different between site-TEM and
spatial-TEM. The GEOS-Chem version 9-01-02
used here aggregates the surface CO2 signals
from the ocean (Takahashi et al. 2009), fossil
fuel consumption, cement manufacture (Andres
et al. 2011), biomass burning emissions (van der
Werf et al. 2006), biofuel combustion emissions
(Yevich and Logan 2003), shipping emissions
(Corbett and Koehler 2003), aviation emissions
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(Friedl 1997), chemical source (Nassar et al.

2010), and net ecosystem exchanges. The atmo-

spheric transportation (Staniforth and Cote

1991, Zhang and McFarlane 1995) modeled a

three-dimensional distribution of atmospheric

CO2. Its spatial resolution is 48 by 58 (latitude by

longitude) and its temporal resolution is 15

minutes for atmospheric transport and convec-

tion, and 60 minutes for emissions.

We detrended the modeled CO2 concentration

time series and obtained the seasonal compo-

nent by using a seasonal-trend decomposition

procedure LOESS (Cleveland et al. 1990). Then

the modeled seasonal variation of the surface

CO2 concentrations was compared with the

observational surface CO2 at six U.S. monitoring

stations of the GLOBALVIEW-CO2 observation

network including CMO at Oregon, HDPDTA at

Utah, KEY at Florida, MLO at Hawaii, NWR at

Colorado, and OPW at Washington (Herbert et

al. 1986, Komhyr et al. 1989, Thoning 1989,

Bakwin et al. 1995, Masarie and Tans 1995,

Masarie et al. 2001, GLOBALVIEW-CO2 2012).

A better match between the observed and

simulated CO2 concentrations at these stations

will indicate better NEP estimates.

RESULTS AND DISCUSSION

Optimal parameters calibrated
with the adjoint method

The conterminous U.S. is covered by five major
plant functional types (PFT) including temperate
coniferous forest, temperate deciduous forest,
grassland, shrub land and boreal forest. Thus, we
parameterized site-TEM for these five PFTs
(Table 3). For the spatial-TEM, we parameterized
the model for each grid cell in the region using
satellite-based GPP data. The optimal parameters
for each PFT with their means and standard
deviations were documented in Table 4. Some
parameters were unable to be calibrated for
spatial-TEM, because the MODIS GPP product
is insensitive to those parameters. For example,
Q10 for heterotrophic respiration (RHQ10) and
other three parameters related to soil moisture
effects on heterotrophic respiration (MOIST-
MAX, MOISTMIN, MOISTOPT) were not opti-
mized (Table 4). The MODIS GPP product
measures the aboveground carbon production
through plant photosynthesis, thus has no
constraints on heterotrophic respiration occurred
in soils.

The spatial distribution of the optimal param-
eters reveals the spatial heterogeneity of ecosys-

Table 3. Optimal parameters from site-level parameterization.

ID Abbreviation Boreal Coniferous Deciduous Grassland Shrub land

1 Cmax 961.92 1072.05 1141.02 778.11 521.03
2 KI 66.11 44.03 97.61 212.91 73.95
3 KC 203.42 185.54 219.83 244.09 271.36
4 Tmax 29.48 33.94 30.60 33.74 41.08
5 Tmin �8.38 �4.26 0 0 �0.32
6 Topt 22.4 30 30.9 32.7 35.10
7 ALEAF 0.54 0.65 0.59 0.37 0.53
8 BLEAF 0.51 0.55 0.68 0.39 0.66
9 CLEAF 0.31 0.38 0.18 0.20 0.052
10 MINLEAF 0.47 0.490 0.02 0.14 0.276
11 Nmax 52.84 21.77 49.15 22.74 94.0
12 Kn1 0.0042 0.0042 0.17153 0.0042 0.0042
13 RAQ10A0 2.43 2.34 2.26 2.31 2.56
14 RAQ10A1 �0.0531 �0.052 �0.023 �0.053 �0.053
15 RAQ10A2 0.0023 0.0023 0.0024 0.0023 0.0023
16 RAQ10A3 �4.1 3 10�5 �4.1 3 10�5 �6 3 10�5 �4.1 3 10�5 �4.1 3 10�5

17 KDC 0.0027 0.0038 0.0046 0.0051 0.0048
18 RHQ10 1.81 1.84 1.99 2.42 2.19
19 MOISTMAX 0.98 0.90 0.93 0.98 1
20 MOISTMIN 0 0 0 0 0
21 MOISTOPT 0.54 0.45 0.46 0.39 0.49
22 Nup 24.36 6.73 7.03 17.22 59.42
23 Kn2 0.0042 0.218 0.25 0.0042 0.0042
24 CFALL 0.0017 0.00469 0.0050 0.052 0.013
25 NFALL 0.0089 0.01043 0.015 0.031 0.0089
26 KRC 0.0029 0.0032 0.0020 0.016 0.014
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tem and biogeochemical processes. Since the
maximum rate of photosynthesis C (Cmax), plant
respiration rate at 08C (KRC), heterotrophic
respiration rate at 08C (KDC), proportion of
vegetation carbon loss as litterfall monthly
(CFALL), ratio between N immobilized and C
respired (Nup) and maximum rate of N uptake by
vegetation (Nmax) were identified as controlling
parameters in modeling carbon fluxes (Chen and
Zhuang 2012), we thus focused our analysis on
the six parameters. These six parameters had a
large spatial variability (Fig. 1). High values of
Cmax resided in the regions around Ozark
plateaus, the Ouachita Mountains and also along
the eastern and western coastlines. Low values of
Cmax existed in the area of Oregon, Idaho and
western part of Texas. The values of KRC were
relatively high in the central U.S. and low in the
eastern and western U.S. Highest KDC appeared
in some small regions in the states of Wyoming,
Colorado and New Mexico and also in southern
edge of Florida. Lowest KDC appeared in eastern
Utah and northeastern Minnesota. The spatial
distributions of CFALL and Nup were similar to
some extent. High parameter values appeared in
the interior of U.S., while lower parameter values
were in the eastern part of U.S. and western

coastal area. However, they were different in
spatial variations in the interior of U.S. CFALL
values varied in Mountain area of eastern U.S.,
while Nup significantly varied in central U.S.
High Nmax values were clustered in the north-
eastern Minnesota and also in some small regions
of eastern U.S. Mountain area, while low values
were located in large areas of central U.S. and the
coastal regions. Chen and Zhuang (2012) (here-
after referred to as Chen2012) conducted a
similar study for U.S. forest ecosystems only.
There are similarities and differences between the
optimal model parameters in Chen2012 and our
estimations for U.S. forest ecosystems. For
example, both showed the high values of Cmax

in Ozark plateaus, the Ouachita Mountains areas.
Chen2012 claimed that high Cmax values were
also in the coastal regions of Washington and
Oregon, but relatively low in our estimates. The
two studies agreed that low KRC values were
located in Washington and Oregon. Chen2012
showed that, in the U.S. South Atlantic regions,
KRC was higher than that in the U.S. East North
Central regions, while our results showed an
opposite comparison. Chen2012 concluded that
high KDC values were mostly distributed in the
Appalachian Mountains area; however our esti-

Table 4. Optimal parameters from spatially explicit parameterization.

ID Abbreviation Boreal Coniferous Deciduous Grassland Shrub land

1 Cmax 742.5 6 57.6 858.5 6 77.6 1131.8 6 65.5 725.4 6 90.3 602.8 6 167.9
2 KI 101.5 6 25.5 61.8 6 20.1 100.6 6 16.9 122.8 6 26.6 74.9 6 20.4
3 KC 349.9 6 46.5 261.9 6 38.3 312.2 6 50.2 247.4 6 42.8 272.3 6 67.9
4 Tmax 28.22 6 0.70 32.71 6 1.05 30.37 6 1.30 36.67 6 1.06 42.84 6 1.71
5 Tmin �6.23 6 0.78 �2.32 6 0.92 0 6 0 0 6 0 �0.67 6 0.96
6 Topt 22.38 6 0.11 29.99 6 0.066 30.90 6 0.001 32.69 6 0.001 35.09 6 0.001
7 ALEAF 0.42 6 0.056 0.49 6 0.059 0.73 6 0.066 0.49 6 0.082 0.53 6 0.055
8 BLEAF 0.31 6 0.051 0.39 6 0.050 0.39 6 0.77 0.53 6 0.069 0.71 6 0.057
9 CLEAF 0.26 6 0.030 0.30 6 0.027 0.52 6 0.050 0.31 6 0.035 0.13 6 0.064
10 MINLEAF 0.48 6 0.022 0.51 6 0.023 0.02 6 0.012 0.1 6 0.009 0.26 6 0.028
11 Nmax 52.6 6 2.2 21.4 6 0.2 49.3 6 0.6 22.8 6 0.4 74.9 6 4.4
12 Kn1 0.006 6 0.002 0.004 6 0.001 0.004 6 0.001 0.004 6 0.003 0.005 6 0.001
13 RAQ10A0 2.34 6 0.043 2.29 6 0.17 2.76 6 0.11 2.49 6 0.18 2.50 6 0.35
14 RAQ10A1 �0.053 6 3 3 10�5 �0.052 6 0.0003 �0.0030 6 0.0018 �0.052 6 0.00035 �0.052 6 0.0002
15 RAQ10A2 0.002 6 2 3 10�7 0.002 6 1 3 10�5 0.003 6 1 3 10�6 0.002 6 1 3 10�7 0.002 6 1 3 10�6

16 RAQ10A3 �4 3 10�5 6 0 �4 3 10�5

6 1 3 10�7
�7 3 10�5

6 1 3 10�6
4 3 10�5

6 2 3 10�7
4 3 10�5

6 1 3 10�7

17 KDC 0.001 6 0 0.003 6 0.0005 0.004 6 0.0003 0.003 6 0.0006 0.003 6 5 3 10�5

18 RHQ10 2 2 2 2 2
19 MOISTMAX 1 1 1 1 1
20 MOISTMIN 0 0 0 0 0
21 MOISTOPT 0.5 0.5 0.5 0.5 0.5
22 Nup 24.36 6 0.001 7.11 6 0.46 6.06 6 0.19 17.5 6 1.68 30.15 6 4.83
23 Kn2 0.004 6 0 0.01 6 0.005 0.008 6 0.003 0.01 6 0.006 0.05 6 0.01
24 CFALL 0.002 6 6 3 10�5 0.004 6 0.0008 0.003 6 0.0004 0.04 6 0.004 0.01 6 0.002
25 NFALL 0.007 6 1 3 10�5 0.01 6 0.008 0.02 6 0.002 0.02 6 0.003 0.009 6 0.001
26 KRC 0.006 6 0 0.001 6 0.0004 0.003 6 0.0005 0.01 6 0.0008 0.006 6 0.0001
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mates are in New England region and state of
Florida. For CFALL, the areas along the Gulf
Coast are high in Chen2012 and low in our
estimates. The Nup and Nmax had similar spatial
patterns in Chen2012. They concluded that
parameters values were high in the southern
coastal plains, the northern central areas and low
in the east-central United States. We found that
Nmax was low in the southern coastal plains
instead. A number of reasons caused these
differences. For example, Chen2012 used annual

GPP observations while our study used monthly
GPP, which constrain parameters differently. The
primary DA goal of Chen2012 was to capture
annual GPP rather than monthly GPP. In
addition, Chen2012 used a Bayesian approach
(Tang and Zhuang 2008, Tang and Zhuang 2009),
while we used an adjoint approach. Different
computational complexities of these two meth-
ods might also contribute to the differences.

The spatial pattern of spatial-TEM parameters’
values generally followed the distribution of

Fig. 1. Spatial distributions of six key parameters in TEM.
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PFTs. It means that model parameters for each
PFT may have independent empirical ranges.
The empirical ranges mirror the biogeochemical
limits of ecosystem processes (e.g., photosynthe-

sis) for different PFTs. While for the same PFT,
the model parameters significantly varied with
locations. Such heterogeneity of ecosystem is due
to several causes including variation of vegeta-

Fig. 2. Site-level simulations conducted for five plant functional types. The trajectories of the modeled GPP and

NEP (red circle; g C m�2 month�1) using the optimal parameters are compared with the AmeriFlux observed GPP

and NEP (blue line). (BF: Boreal forest; TCF: Temperate coniferous forest; TDF: Temperate deciduous forest; G:

Grassland; S: Shrub land.)
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tion structure (Bondeau et al. 1999), plant species
(Cardinale et al. 2000), forest stand age (Gower et
al. 1996, Pregitzer and Euskirchen 2004, Zaehle et
al. 2006, He et al. 2012), species differences in leaf
longevity (Kitajima et al. 1997), and local
agriculture management (Rounsevell et al.
2003). Satellite-based MODIS GPP is a function
of all these factors, thus well represents the
spatial heterogeneity of aboveground ecosystem
structure and functioning. By assimilating
MODIS GPP into TEM, the parameters associat-
ed with aboveground ecosystem processes were
well constrained for each grid cell in the region.

Model evaluation
Site-TEM modeled GPP and NEP are com-

pared well with the AmeriFlux observations (Fig.
2). Model-data fitting statistics including the
Pearson correlation coefficients (R2) and first
order linear regression slope and intercept
showed that site-TEM generally worked better
in boreal, coniferous and deciduous forests than
in grassland and shrub land (Table 5). When
extrapolating the grassland and shrub land site-
level optimal parameters to the region, the
uncertainty was amplified. Similarly, the regional
simulations for forest ecosystems were also of a
large uncertainty. These uncertainties were due
to the fact that the site-level parameterization is
assumed with no- change for the same PFT over
the region.

Spatially explicit parameters helped reduce

model simulation uncertainties because they
were calibrated for each grid cell. Regional
distributions of annual GPP from both spatial-
TEM and site-TEM simulations were compared
with the MODIS GPP (Fig. 3). The spatial-TEM
estimated the regional annually-aggregated GPP
was 6.87 Pg C yr�1 (1 Pg¼ 1015 g) in 2005. There
was 0.28 Pg C yr�1 or 4% biases in comparison
with the MODIS observation of 6.59 Pg C yr�1.
Moreover, spatial-TEM generally agreed with the
MODIS data in terms of spatial distribution,
except for a slight overestimation in the mid-east
area. The site-TEM annual GPP was 5.95 Pg C
yr�1 in 2005, which was 0.64 Pg C yr�1 or 10%
lower than the observations. The spatial distri-
bution greatly differed from observations. The
greatest discrepancies existed in the western
(Washington, Oregon, California) and southeast-
ern (Georgia, Alabama, Florida) coastal areas and
in the northeastern central area (Illinois, Indiana,
Ohio). In comparison, the spatially explicit
parameterization method tends to more ade-
quately account for the spatial heterogeneity of
ecosystems in the regional simulations.

To reveal the magnitude of spatial ecosystem
heterogeneity, we partitioned the regional GPP
according to PFTs. We found that grassland,
temperate deciduous forest and boreal forest had
the greatest spatial heterogeneity (Fig. 4). In
grassland, the site-TEM greatly underestimated
GPP. In temperate deciduous forest and boreal
forests, the site-TEM overestimated GPP. Such
regional model-data misfits were due to the site-
level calibration and extrapolation. For example,
site-TEM grassland was parameterized at Vaira
Ranch site. Because the Vaira Ranch site in
California is affected by the Mediterranean
climate, which is dry and hot in summer.
Precipitation occurs from October to May and
the growing season typically ends in May. After
May, the grass gradually dies due to high
temperature and dry environmental conditions.
The seasonality of GPP was well captured by
site-TEM (Fig. 5). However, the parameters
obtained at the Vaira Ranch site does not work
for other grasslands grid cells in the region.

Spatially, the overestimation in grasslands
compensated the underestimation in boreal
forests and temperate deciduous forests, result-
ing in the regional GPP from site-TEM did not
differ much from the observations. The regional

Table 5. Model-data fitting statistics: the carbon

dynamics of GPP and NEP modeled using the site-

level parameterization method are compared with

the AmeriFlux observations.

Simulated carbon fluxes R2 Slope Intercept

Boreal forest
GPP 0.92 0.93 �1.37
NEP 0.73 1.00 �7.64

Temperate coniferous forest
GPP 0.98 1.01 �5.98
NEP 0.89 0.92 �3.24

Temperate deciduous forest
GPP 0.89 0.98 10.45
NEP 0.85 0.91 8.89

Grassland
GPP 0.60 0.65 30.60
NEP 0.41 0.89 �5.38

Shrub land
GPP 0.78 0.67 14.52
NEP 0.41 0.29 �0.49
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GPP seasonal cycle simulated with the site-TEM

also fitted observations well (Fig. 5).

The spatial-TEM estimated NEP was 0.74 Pg C

yr�1 for the conterminous U.S. in 2005, while the

site-TEM only estimated 0.21 Pg C yr�1. Since

there is no regional observational NEP for direct

comparison, we used an atmospheric transport

model (GEOS-Chem) to indirectly evaluate the

Fig. 3. Annual GPP (g C m�2 year�1) over the conterminous United States in 2005. The upper panel is the TEM-

modeled GPP by applying the spatially explicit parameters. The middle panel is MODIS GPP in 2005 and the

lower panel is TEM-modeled GPP with site-level parameterization method using AmeriFlux data.
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NEP simulated with site-TEM and spatial-TEM.
The surface net carbon exchanges between
terrestrial ecosystems and the atmosphere were
different between two TEM simulations, affecting
the seasonality of atmospheric CO2 concentra-
tions (Fig. 6). The root mean squared errors
(RMSE) between the spatial-TEM and observa-
tions were 1.7, 1.9, 1.15, 0.5, 1.6, 0.5, 1.6, and 1.3
(ppm) at CMO, HDPDTA, KEY, MLO, NWR,
OPW, respectively. In contrast, the RMSE be-
tween the site-TEM simulation and observations
were much larger: 4.0, 2.9, 1.9, 1.2, 2.7, 3.9 (ppm)
at six monitoring stations, respectively. These
results suggested that spatial-TEM better esti-
mated regional NEP.

Conclusions
We used a process-based biogeochemistry

model, the Terrestrial Ecosystem Model, to
simulate the carbon dynamics over the conter-
minous United States with two model parame-
terization methods. One method parameterized
TEM at site-level with AmeriFlux data (site-TEM)
and then extrapolated the optimal parameters to
the region. The second method was a spatially

explicit parameterization approach using satel-
lite-based MODIS GPP (spatial-TEM). We con-
cluded that the spatial pattern of the optimized
parameters generally follows the PFT distribu-
tion. More importantly, the parameter values for
each PFT also significantly vary across the space.
This finding is consistent with several other
spatially explicit data assimilation studies (e.g.,
Zhou et al. 2009, Zhou et al. 2012). We also
concluded that the spatial-TEM better captured
spatial distribution, seasonal and annual carbon
dynamics. The conterminous U.S. annual GPP
was 6.87 Pg C yr�1 simulated with spatial-TEM
and 5.95 Pg C yr�1 with the site-TEM, while
satellite-based estimation was 6.59 Pg C yr�1. The
spatial distribution pattern of GPP from spatial-
TEM agreed well with observations. The spatial-
TEM estimated NEP of 0.74 Pg C yr�1 for the
conterminous U.S. in 2005, while the site-TEM
only estimated 0.21 Pg C yr�1, which was 72%
smaller. The modeled NEP from the two methods
was evaluated by conducting two sets of GEOS-
Chem simulations and comparing the simulated
near surface atmospheric CO2 concentrations
with the flask measurements. Driven with

Fig. 4. Regional GPP (Pg C year�1; 1 Pg¼ 1015 g) in 2005. The largest differences between spatial-TEM and site-

TEM exist in grasslands. (BF: Boreal forest; TCF: Temperate coniferous forest; TDF: Temperate deciduous forest;

G: Grassland; S: Shrub land.)
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spatial-TEM estimated NEP, GEOS-Chem better
captured the seasonal variation of surface CO2.

Our study suggested that the future quantifica-
tion of terrestrial ecosystem dynamics should use
the available spatial information to parameterize
the ecosystem models in a spatially explicit
manner so as to account for the effects of spatial
heterogeneity of regional ecosystems on carbon
cycling. In addition, our study indicated that the
adjoint approach was an effective approach to
assimilate both in situ and satellite-based data to
improve ecosystem model parameterization.

This study has several limitations. First, MODIS
GPP data are model results using the MOD17
algorithms, which are calibrated for representative
PFTs. Thus GPP data is not strictly spatially
explicit. However, since fPAR is the most impor-
tant variable in the MOD17 algorithms, and is
spatially explicit, we thus treated the MODIS GPP
as spatially explicit. Our study demonstrated the
satellite-based GPP information indeed helped

improve regional simulations. Second, our results
showed that parameters associated with soil
processes were not well calibrated using MODIS
GPP. This is mainly due to the fact that MODIS
GPP data is lack of information to constrain the
parameters associated with soil processes includ-
ing Q10 for heterotrophic respiration (RHQ10)
and other three parameters related to soil mois-
ture effects on heterotrophic respiration (MOIST-
MAX, MOISTMIN and MOISTOPT)). It has been
pointed out that a specific dataset is only able to
constrain a subset of model parameters in other
studies. For example, Barrett (2002) found that
NPP data could only directly constrain some
parameters associated with leaf processes (i.e.,
maximum light-use efficiency, allocation of NPP
to leaves, carbon residence time of leaf ). Xu et al.
(2006) found that even using data of one carbon
flux (soil respiration) and five pools (woody
biomass, foliage biomass, litter fall, C in litter
layers and C in mineral soil), some parameters

Fig. 5. Seasonal variability of regional GPP (Pg C year�1; 1 Pg¼ 1015 g) for each PFT. The variability shows that

site-TEM significantly overestimates the GPP seasonal changes in boreal forests and temperate deciduous forests,

while it underestimates the GPP seasonality in grasslands. (BF: Boreal forest; TCF: Temperate coniferous forest;

TDF: Temperate deciduous forest; G: Grassland; S: Shrub land.)
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associated with underground processes (i.e.,

transfer coefficients from pools of metabolic litter,

microbe and passive soil C) were still not well
constrained. Previous data assimilation studies

have noticed that combining multiple sources of

information including ecosystem fluxes and pools

data could in general help reduce parameter

uncertainty (e.g., Barrett 2002, Xu et al. 2006,

Zhou and Luo 2008, Zhou et al. 2012). We thus

speculate that the spatial-TEM could be improved

by utilizing other spatially explicit soil carbon
pool data in addition to MODIS GPP. For instance,

Zhou et al. (2009) showed that soil carbon content

data is tightly related to soil respiration Q10,

therefore could be used to calibrate Q10 in CASA

model (the same parameter as TEM’s RHQ10).

Therefore, soil property data such as Harmonized

World Soil Database (FAO/IIASA/ISRIC/ISS-CAS/

JRC 2012) or Soil Organic Carbon database
(Global Soil Data Task 2000) may be useful in

our spatially explicit calibration of RHQ10,
MOISTMAX, MOISTMIN, MOISTOPT in future
study. Third, we obtained optimal parameters
using the adjoint method. However the uncer-
tainties of these parameters were not quantified.
Previous studies indicated that, at the minimal
point of the cost function, the inverse of Hessian
can describe the uncertainty of optimal parame-
ters (Tarantola 1987, Rayner et al. 2005, Scholze et
al. 2007). Such conclusion is valid as long as the
distribution of model parameters is multivariate
normal. In our study, model parameters were
assumed to uniformly distribute between their
empirical upper and lower bounds (Table 2).
Thus, instead using the inverse-of-Hessian meth-
od, new methods are needed to quantify the
uncertainty of our model parameters.
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