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Abstract

Reliability of terrestrial ecosystem models highly depends on the quantity and quality of
the data that have been used to calibrate the models. Nowadays, in situ observations of
carbon fluxes are abundant. However, the knowledge of how much data (data length)
and which subset of the time series data (data period) should be used to effectively5

calibrate the model is still lacking. In this study we use the AmeriFlux carbon flux data
to parameterize the Terrestrial Ecosystem Model (TEM) using an adjoint based data
assimilation technique for five different ecosystem types including deciduous broadleaf
forest, coniferous forest, grassland, shrubland and boreal forest. We hypothesize that
calibration data covering various climate conditions for the ecosystems (e.g. drought10

and wet; high and low air temperature) can reduce the uncertainty of the model pa-
rameter space. Here parameterization is conducted to explore the impact of both data
length and data period on the uncertainty reduction of the posterior model parameters
and the quantification of site and regional carbon dynamics. We find that: (1) the model
is better constrained when it uses two-year data comparing to using one-year data.15

Further, two-year data is long enough in calibrating TEM’s carbon dynamics, since us-
ing three-year data could only marginally improve the model performance at our study
sites; (2) the model is better constrained with the data that have a higher “climate
variability” than that with a lower one. The climate variability is used to measure the
overall possibility of the ecosystem to experience various climate conditions including20

drought and extreme air temperatures and radiation; (3) the US regional simulations
indicate that the effect of calibration data length on carbon dynamics is amplified at
regional and temporal scales, leading to large discrepancies among different param-
eterization experiments, especially in July and August. This study shall help the eddy
flux observation community in conducting field observations. The study shall also ben-25

efit the ecosystem modeling community in using multiple-year data to improve model
parameterization and predictability.
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1 Introduction

Process-based biogeochemical models such as TEM (Raich et al., 1991; McGuire
et al., 1992; Zhuang et al., 2003, 2013), Biome-BGC (Running and Coughlan, 1988),
CASA (Potter et al., 1993), CENTURY (Parton et al., 1993) and Biosphere Energy
Transfer Hydrology scheme (BETHY) (Knorr, 2000) have been widely used to quantify5

the role of terrestrial ecosystems in the global carbon cycle. Complex ecosystem pro-
cesses were modeled based on different underlying assumptions in these models. For
example, TEM assumes that the photosynthetic rate is controlled by a maximal pho-
tosynthetic capacity of a particular ecosystem and several other scalar factors (e.g.,
temperature and soil moisture) (Zhuang et al., 2003). In contrast, BETHY assumes it10

is controlled by either Rubisco carboxylation rate or the electron transportation limita-
tion on the carboxylation substrate regeneration (Farquhar et al., 1980). Although the
assumptions and model algorithms employed by different models are different, these
models are able to reproduce the observed fluxes with careful calibration using ob-
servational data. Therefore, the performance of the model depends on how well its15

parameters are calibrated other than the model structure or algorithms being used.
Eddy covariance techniques have been used to measure exchanges of carbon, wa-

ter and energy between terrestrial ecosystems and the atmosphere. Globally over 400
eddy covariance flux towers are active and operated on a long-term and continuous
basis. The data measured from these towers help understand terrestrial ecosystem20

processes and are used to calibrate terrestrial ecosystem model parameters (Baldoc-
chi et al., 2001; Baldocchi, 2003). Terrestrial ecosystem model calibration with eddy
covariance data aims to constrain the uncertainty in model parameter space and opti-
mize the model output of biosphere-atmosphere CO2 exchanges. The model calibra-
tion methods have been studied extensively over the recent decades (Knorr and Kattge,25

2005; Santaren et al., 2007; Tang and Zhuang, 2009; Kuppel et al., 2012). However, the
sensitivity of terrestrial ecosystem model calibration to the characteristics of calibration
data (e.g., data length, data period) has not been well investigated. For example, Knorr
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and Kattge (2005) showed that, by assimilating the data of only 7 days, half-hour net
ecosystem production (NEP) and energy flux (LE), the ecosystem model uncertainty
could be substantially reduced. More importantly, the 7 day calibration data were not
randomly selected. They carefully chose the 7 day data (14 January, 3 March, 9 July,
24 September, 25 October in 1997 and 15 May, 9 August in 1998) to represent typi-5

cal weather conditions of different seasons. The importance of calibration data period
was highlighted in their study, but a quantitative criterion to select appropriate period of
available data for model calibration is still lacking.

Classical model calibrations tend to use as much calibration data as they could, in
order to adequately use information about the ecosystem processes. However, those10

calibration approaches were not demonstrated to be superior to that used appropriate
length of data (Sorooshian et al., 1983). Previous studies focusing on the calibration
data length suggested that a length of data ranging from one year to eight years was
sufficient to calibrate a particular hydrological process (Gan and Biftu, 1996; Yapo et al.,
1996; Xia et al., 2004). However, for calibrating terrestrial ecosystem models, the data15

length issue has not been well addressed to date. Here our first objective is to investi-
gate the sensitivity of ecosystem model calibration to the length of calibration data.

Generally, terrestrial ecosystem models are calibrated with a subset of available ob-
servational data and validated with the remaining data. However, which section of avail-
able data (data period) should be used to calibrate the model has not yet been well20

studied. Previous efforts suggested that we must use appropriate data for calibration,
and more importantly the data should be representative of various possible climate
conditions (e.g. drought/wet) experienced by the system (Gan and Biftu, 1996); While
some studies indicated that the model parameterization was insensitive to the data pe-
riod selected (Yapo et al., 1996). In this study, we hypothesize that: (1) calibration data25

period selection is as important as calibration data length in reducing model parameters
uncertainty; (2) to best reduce the uncertainties in model parameter space, calibration
data should be carefully selected so that they represent the various climate condi-
tions experienced by ecosystems. Thus, our second objective is to test if calibrations

6838

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/6835/2013/gmdd-6-6835-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/6835/2013/gmdd-6-6835-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 6835–6865, 2013

Impact of data on
model calibration

Q. Zhu and Q. Zhuang

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

using the data that have covered various climate conditions (including drought/wet,
high temperature/low temperature and high radiation/low radiation) are superior to the
calibrations using flux data that cover normal climate conditions in improving model
parameterization.

The optimal calibration data length could be different at various calibration sites de-5

pending on the site characteristics such as ecosystem types (Xia et al., 2004). Pre-
vious studies often focused on only one specific ecosystem type. For example, Xia
et al. (2004) worked on a grassland site and Knorr and Kattge (2005) studied two
grassland sites. In this study, the calibration data length and data period studies were
conducted at sites with various ecosystem types including deciduous broadleaf forest,10

coniferous forest, grassland, shrubland and boreal forest. Thus, our third objective is
to explore whether or not the selection criterion of optimal calibration data length and
data period will change with ecosystem types.

2 Methods

To achieve our three research objectives, we employed an adjoint method (Zhu and15

Zhuang, 2013a, b) to parameterize the Terrestrial Ecosystem Model (Raich et al., 1991;
McGuire et al., 1992; Zhuang et al., 2003) by assimilating data of AmeriFlux net ecosys-
tem production (NEP) and gross primary production (GPP). Various model calibration
experiments were conducted. First, we calibrated parameters with one-year, two-year
and three-year data, respectively. The model performance (after assimilating different20

lengths of data) was then evaluated to examine how much data was needed to obtain
satisfactory model. Second, we defined “Climate Variability (ClimVar)” as the summa-
tion of variation of precipitation, radiation and air temperature over the calibration data
period. We then grouped the calibration data into two categories (above and below the
mean ClimVar) and conducted one-year, two-year and three-year model calibrations25

again to explore which calibration data category can result in better model parameter
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values. Finally, we analyzed the impacts of data length and data period on model cali-
bration at five sites with different ecosystem types.

2.1 Model description

The Terrestrial Ecosystem Model (TEM) (Raich et al., 1991; McGuire et al., 1992;
Zhuang et al., 2003) is a large-scale, process-based biogeochemical model. It sim-5

ulates the dynamics of carbon (C), nitrogen (N) and water (H2O) of various terrestrial
ecosystems. The carbon and nitrogen fluxes and vegetation and soil pools are esti-
mated at a monthly time step based on the spatially explicit information on climate,
ecosystem type, soil type, and elevation. McGuire et al. (1992) investigated how inter-
actions between carbon and nitrogen dynamics affected the carbon cycling. They incor-10

porated the mechanism of C–N interaction into TEM and they concluded that carbon
cycling could be strongly affected by the limited N availability in ecosystems. Zhuang
et al. (2003) modeled the effects of soil thermal dynamics on carbon cycling and im-
proved the simulations of the timing and magnitude of atmospheric CO2 draw-down
during growing seasons. In this study we used the TEM version 5.0 that is comprised15

of both C–N interaction and soil thermal dynamics. This version of TEM has been
widely used to model the carbon dynamics at both regional and global scales (Lu and
Zhuang, 2010; Zhuang et al., 2010; Chen et al., 2011; Chen and Zhuang, 2013).

2.2 Key processes and associated parameters

TEM models GPP as a maximal photosynthesis capacity multiplied by a number of20

limiting scalars (Raich et al., 1991):

GPP = Cmax · f (phenology) · f (foliage) · f (Ca,Gv) · f (T ) · f (PAR) · f (NA) · f (FT) (1)

where Cmax is the maximum rate of carbon assimilation through photosynthesis, the
remaining terms are scalar factors: f (phenology) characterizes the ratio of monthly leaf
area to the potential maximum leaf area (Raich et al., 1991); f (foliage) is the ratio of25
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leaf biomass relative to maximum leaf biomass (Zhuang et al., 2010); f (Ca,Gv) rep-
resents the effect of atmospheric CO2 concentrations (Ca) and canopy conductance
(Gv) on GPP (McGuire et al., 1997); f (T ) and f (PAR) are air temperature and photo-
synthetically active radiation scalar factors (Raich et al., 1991); f (NA) represents the
nitrogen availability and its limitation on carbon production (McGuire et al., 1992); f (FT)5

describes how the soil freeze–thaw thermal dynamics affect the GPP (Zhuang et al.,
2003).

For each monthly time step, NEP is defined as the difference between net primary
production (NPP) and heterotrophic respiration (RH), and NPP is defined as the dif-
ference between GPP and autotrophic respiration (RA). TEM formulates the RH as10

function of soil carbon (Cs) affected by soil moisture and soil temperature:

RH = KD ·Cs · f (RHQ10) ·MOIST (2)

where KD is the reference heterotrophic respiration rate at 10 ◦C, f (RHQ10) describes
the temperature dependency of heterotrophic respiration on the soil temperature.
MOIST is the moisture scalar factor.15

Model autotrophic respiration is comprised of plant growth respiration (Rg) and main-
tenance respiration (Rm). The Rg is estimated to be 20 % of the difference between
GPP and Rm (Raich et al., 1991). Rm is formulated as a function of plant carbon (Cv)
influenced by air temperature (Eq. 3):

Rm = KR ·Cv · f (RAQ10) (3)20

where KR is the reference plant respiration rate at 10 ◦C, f (RAQ10) describes the tem-
perature dependency of plant respiration rate on air temperature.

Ten key parameters (Table 1) associated with the three ecosystem processes (in-
cluding GPP, RA and RH) were selected based on previous model sensitivity and cali-
bration studies (Zhu and Zhuang, 2013b). GPP associated key parameters are maxi-25

mum rate of photosynthesis C (CMAX), half saturation constant for PAR used by plants
(KI), half saturation constant for CO2-C uptake by plants (KC), and coefficients A, B
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and C to model the relative photosynthetic capacity of vegetation (ALEAF, BLEAF and
CLEAF). CMAX is the most important parameter in determining GPP; KI is included in
scalar factor f (PAR); KC is in scalar f (Ca,Gv), they have been demonstrated to be the
top three most important parameters of modeling GPP and NEP (Tang and Zhuang,
2009; Chen and Zhuang, 2012; Zhu and Zhuang, 2013b). ALEAF, BLEAF and CLEAF5

of f (phenology) are ranked among the most important parameters in controlling GPP
(Tang and Zhuang, 2009; Zhu and Zhuang, 2013b). The ecosystem respirations have
been shown to be strongly affected by ambient temperature and could be modeled as
an exponential function of Q10 parameters (Lloyd and Taylor, 1994; Kirschbaum, 1995;
Fang and Moncrieff, 2001). Therefore, here we selected the plant and soil Q10 respira-10

tion parameters (RAQ10A0, RHQ10) as our key parameters. RAQ10A0 is the leading
coefficients for Q10 model of plant respiration included in f (RAQ10) (Eq. 3); RHQ10 is
a coefficient of Q10 model for heterotrophic respiration included in f (RHQ10) (Eq. 2). In
addition, we also chose the first order respiration rates at reference temperature 10 ◦C
for plant (KR) and soil (KD) as our key parameters.15

2.3 Forcing and calibration data

TEM is driven by monthly climate data of cloudiness, air temperature and precipitation
(New et al., 2002; Mitchell and Jones, 2005). Model also requires geographic infor-
mation including elevation, soil texture and plant functional type (Raich et al., 1991;
McGuire et al., 1992). The long-term global averaged atmospheric CO2 concentration20

is obtained from observations at Mauna Loa, Hawaii (New et al., 2002).
Monthly aggregated GPP and NEP from AmeriFlux level 4 products are used as

calibration data. NEP is directly measured by AmeriFlux network, while GPP is derived
based on NEP measurements (Reichstein et al., 2005). During daytime NEP contains
both plant photosynthesis (GPP) and total ecosystem respirations (RESP), while during25

nighttime NEP measurements include only RESP. The nighttime RESP measurements
are extrapolated to daytime according to a temperature response function. Therefore
the daytime GPP could be separated from NEP by subtracting the estimated daytime
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RESP. In this study, monthly aggregated NEP and GPP data from Harvard forest site
(Wofsy et al., 1993; Goulden et al., 1996), Howland main forest site (Hollinger et al.,
1999), Vaira Ranch site (Baldocchi et al., 2004), Lost Creek site (Davis et al., 2003),
UCI_1850 site (Goulden et al., 2006) are used to calibrate deciduous broadleaf forest,
coniferous forest, grassland, shrubland and boreal forest, respectively (Table 2).5

2.4 Model calibration method

An adjoint method based data assimilation framework has been developed for TEM
model calibration (Zhu and Zhuang, 2013a, 2013b). The adjoint version of TEM model
was employed to calculate the sensitivity of the cost function with respect to mode
parameters. Then we used the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm10

(Shanno, 1970), a quasi-Newton optimization method, to optimize model parameters.
The cost function was defined as:

J = (x−xa)TS−1(x−xa)+
N∑
i=1

(f (x)i − fo
i )TR−1(f (x)i − fo

i ) (4)

where x is a column vector of model parameters of interest, xa are prior parameters
and S is a prior error covariance. The first term (x−xa)TS−1(x−xa) accounts for the15

prior constraint on the calibrated model parameters. f (x) is an observation operator,
which calculate observable variables (fo) based on TEM model algorithms and model
parameters (x). In this study, the observable variables are AmeriFlux monthly NEP
and GPP, thus f

o is a column vector containing the two variables. R is the data error
covariance. The second term

∑N
i=1 (f (x)i − f

o
i )TR−1(f (x)i − f

o
i ) accounts for the model-20

data departure summed over the course of assimilation window (i ∈ [1,N]).
The gradient of the cost function with respect to model parameter was calculated with

an adjoint version of TEM. The second order derivatives of the cost function to model
parameters (Hessian matrix) was approximated with the BFGS algorithm (Shanno,
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1970). Then, the decreasing direction of the cost function could be calculated as:

p =
−∇J

H
(5)

where p is decreasing direction, ∇J is the first order derivatives of J to model parame-
ters, H denotes Hessian matrix. Then the model parameter is updated iteratively (Eq. 6)
until the cost function is minimized:5

xk+1 = xk +a ·pk (6)

where xk+1 and xk are model parameters at kth and k +1th iterations. a is step size
and pk is decreasing direction calculated at kth iteration. Through minimizing the cost
function, we are able to get the model close to real observations and ensure that the
optimized model parameters are constrained with our prior knowledge. More technical10

details about the adjoint TEM development refer to Zhu and Zhuang (2013b).

2.5 Model calibration experiments

We explored how long the calibration data would be enough to substantially improve
model parameters estimation and significantly reduce parameters uncertainties. In that
case, any longer time series data would only marginally improve the optimized model15

parameters. Previous studies suggested that the calibration data should cover typical
climatic conditions of various seasons (Knorr and Kattge, 2005). Thus, we conducted
experiments of model calibration using data length of one-, two- and three-consecutive
years. The rest of observational data was used for evaluating the model performance.
All possible combinations of calibration data with different length were considered. For20

example, at Harvard Forest site (1992 to 2006), there are 15, 14 and 13 calibration
runs for one-year, two-year and three-year experiments, respectively.

We also examined the impact of using different potions of available time series data
as calibration data on the goodness of the calibrated model. First, we defined a new
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term “climate variability” (hereafter referred to as ClimVar) as the summation of vari-
ation of precipitation, radiation and air temperature over the period of data that have
been used to calibration the model. To assure the three variables were on the same
order of magnitude, they were normalized to vary over the same numerical range. The
normalization was done by subtracting the variable mean from each variable and divid-5

ing by its standard deviation. All three variables have a mean of zero and a standard
deviation of one. We then took absolute value of the variation of the three variables and
sum them up to come up with the variable of ClimVar (Fig. 1). The ClimVar measures
the overall variability of climatic conditions that an ecosystem experiences including
drought/wet, high temperature/low temperature and high radiation/low radiation. We10

hypothesize that, in order to reduce the uncertainties in model parameter space cal-
ibration data should be carefully selected so that they represent the various climate
conditions experienced by the ecosystems.

For calibration experiments of a certain data length (one-year, two-year or three-
year), a mean ClimVar was calculated by averaging the specific ClimVar from all the15

experiments. Depending on the comparison between a ClimVar of a specific exper-
iment and the mean ClimVar, calibration data are grouped into two categories: data
ClimVar below mean (Category 1) and data ClimVar above mean (Category 2). By
comparing the calibrated models’ performance for the two categories, we were able to
examine how different portions of data will affect the model calibration.20

For each calibration run, ten parameters were calibrated (Table 1). Then, the perfor-
mance of the TEM model was assessed with Root Mean Square Error (RMSE) and
posterior parameter uncertainty reduction (UR). The RMSE accounts for total model
biases and intuitively shows how good our model is after calibration:

RMSE =

√√√√√ N∑
i=1

(modeli −obsi )2

N
(7)25
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where obsi and modeli are AmeriFlux observations and model outputs at time step i ,
the N is the total number of pairs of observation and model outputs. Model calibrations
only improve the means of parameters. The change of parameter uncertainties after
model calibration is as important as the change of parameter values (Raupach et al.,
2005). The UR accounts for the reduction of uncertainty in model parameter space5

after calibration compared with the prior parameter uncertainty. It quantitatively shows
how much useful knowledge we could learn through assimilating a certain length of
observational data:

UR =

(
1− σpost

σprior

)
·100% (8)

where σprior is prior parameter uncertainty that assumed to be 40 % of each parame-10

ter range. σpost is posterior parameter uncertainty that is the square root of diagonal
elements from posterior parameter uncertainty matrix (Rpost).

Rpost =

(
S−1 +

N∑
i=1

HiR
−1Hi

)−1

(9)

where S and R are prior parameters error covariance matrix and data error covariance
matrix, respectively. Hi is the Jacobian matrix evaluated at the minimum of the cost15

function. i ∈ [1,N] covers the data assimilation time window.
Calibration experiments were carried out at five different sites including deciduous

broadleaf forest, coniferous forest, grassland, shrubland and boreal forest. In addition
to using these experiments to study the effects of calibration data length and data
period on calibration, the site-level optimized parameters were also extrapolated to the20

conterminous United States, which is dominated by these five ecosystem types, to
explore the influence of different model calibrations on regional carbon dynamics.

The regional simulations are used to explore whether the effect of calibration data
length on carbon dynamics at site levels will be amplified or dampened at regional
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scales. In addition, regional simulations are also used to learn which season is highly
sensitive to optimal model parameters. We set up ensemble simulations with model pa-
rameters from different calibration experiments. For example, for one-year experiments
we have 15, 9, 7, 5 and 4 sets of optimal parameters for deciduous broadleaf forest,
coniferous forest, grassland, shrubland and boreal forest. As a result, the total number5

of ensemble run is 18 900.

3 Results and discussion

3.1 Impacts of data length and data period on model calibration and
predictability

Figure 2 depicts the empirical cumulative distribution function (CDF) of posterior model10

performance in terms of RMSE (Eq. 7). For the one-year calibration experiments,
the values of RMSE are ranged from 12 to 25 gCm−2 month−1 at Harvard decidu-
ous broadleaf forest site. In the two-year experiments, the RMSE is ranged from 7 to
25 gCm−2 month−1, suggesting that the averaged model performance was improved in
two-year calibration experiments compared with one-year experiments. Furthermore,15

in the three-year experiments the RMSE was very close to that in the two-year experi-
ments. Thus, we concluded that two-year data were enough for TEM calibrations, and
three-year data only marginally improved TEM at these sites. The conclusion is insen-
sitive to sites with different ecosystem types (Fig. 2). At all the five sites, the CDFs
hardly changed when the calibration data length was further increased from two-year20

to three-year. The steepness of CDF was low and has not been significantly increased
when we progressed from one-year to three-year experiments at Harvard deciduous
broadleaf forest site and Howland coniferous forest site.

Our experiments show that the model performance is highly sensitive to the selec-
tion of data period at some sites. Specifically, when we randomly selected a two-year25

dataset from nine years consecutive observational data at Howland main forest site,
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selecting different period of data ends up with totally different models, whose RMSE is
ranged from 6–12 gCm−2 month−1. At Vaira Ranch grassland site, Lost Creek shrub-
land site and UCI_1850 boreal forest site, the CDFs became much steeper when the
length of calibration data was increased from one-year to two-year (or three-year).
Note, only in the one-year calibration experiments, the model performance is sensitive5

to selection of data period at the three sites. Thus, we concluded that the importance
of calibration data period depends on the site characteristics. This finding is consistent
with the diverged estimates from previous studies using data from different time periods
for parameterization. For example, although the study for Leaf River Basin site in Mis-
sissippi concluded that model calibration was insensitive to the selection of data period10

(Yapo et al., 1996); others at sites in Nepal, China, Tanzania and the US concluded that
model calibration was sensitive to the selection of data period covering a wide range
of environmental (drought/wet) conditions (Gan and Biftu, 1996).

3.2 Impacts of climate variability of calibration data on model performance

Previous model calibration studies using AmeriFlux data suggested that the calibra-15

tion data period should cover typical climate conditions of different seasons (Knorr
and Kattge, 2005). To establish a relationship between climate conditions of calibration
data period with model performance, we grouped the calibration experiments with one-
year, two-year or three-year data into two categories. Figure 3 depicts the empirical
cumulative distribution function (CDF) of model performance of the two categories. For20

one-year calibration experiments, the averaged model performance in category 2 (data
ClimVar above mean) was better than that of category 1 (data ClimVar below mean)
with only one exception at Harvard forest site. The result suggests using a subset
of available data that cover various climatic conditions will improve model calibration.
While for two-year and three-year experiments, only at Howland coniferous forest site,25

the averaged model performance in category 2 was better than that of category 1. And
the averaged model performances of four other sites were almost the same. It indicates
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that as the length of calibration data increases the superiority of using data with high
climate variability becomes insignificant.

3.3 Impacts of data length and data period on parameter uncertainty reduction

Figure 4 depicts the empirical cumulative distribution function (CDF) of parameters un-
certainty reduction (UR: Eq. 8). At Harvard deciduous broadleaf forest, Howland conif-5

erous forest and UCI_1850 boreal forest sites, the uncertainty reduction for one-year
experiments was smaller compared with UR for the two-year experiments. However
the UR for two-year experiments is very close to that for three-year experiments. It in-
dicates that useful information contained in a two-year dataset is much more than that
contained in a one-year dataset, but is similar to that contained in a three-year dataset.10

At Vaira Ranch grass land site, the CDFs progressively shifted towards right as the
length of calibration data increased from one-year to three-year data, suggesting that
a longer calibration dataset contains more useful information that helps better constrain
model parameters. However at the Lost Creek shrubland site, there were no big dis-
crepancies between CDFs with different length of calibration data. Thus we concluded15

that, in general, the impacts of data length on reducing model parameter uncertainties
were different between sites.

The uncertainty reduction experiments were also grouped into two categories. Fig-
ure 5 depicts the empirical cumulative distribution function (CDF) of parameters un-
certainty reduction in the two categories. In most cases, more uncertainties in model20

parameter space could be reduced when using data with higher ClimVar than using
data with lower ClimVar. This finding supports our conclusion that using data period
that covers various climatic conditions will better improve model calibration.

3.4 Optimal model parameters

The optimal model parameters were normalized (parameter values minus the lower25

bound and dividing by the difference between upper and lower bounds) and depicted

6849

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/6835/2013/gmdd-6-6835-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/6835/2013/gmdd-6-6835-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 6835–6865, 2013

Impact of data on
model calibration

Q. Zhu and Q. Zhuang

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

in Fig. 6. Since for each calibration experiments (one-year, two-year or three-year) we
had several sets of optimal parameters estimated with different periods of observa-
tional data, we provided the both mean and standard deviation (error bars) of the ten
parameters in Fig. 6. By comparing the optimal parameters from one-year, two-year
and three-year experiments, we assessed the sensitivity of model optimal parameters5

to the length of calibration data.
At Harvard forest site, although data length increased from one year to three years,

the optimal model parameters are converged to similar values except for RAQ10A0
and KR (two parameters associated with plant respiration). Only plant respiration was
sensitive to length of calibration data at this site. Therefore, the differences of model10

performance (Fig. 2: harvard forest site) were mainly resulted from the discrepancies
in the modeled plant respiration. The error bars of CMAX, KI, KC (three photosynthesis-
related parameters) were relatively smaller than other parameters, which suggest that
these parameters were relatively less sensitive to the data length being selected.

At four other sites, the optimal parameters of two-year experiments merged towards15

those of three-year experiments, while they were generally different from those of one-
year experiments. It suggests that model parameters could be better improved by using
two-year calibration data rather than only one-year data. However, two-year calibration
data were generally enough in this case, because three-year calibration data could not
further improve model parameters significantly. This conclusion is valid for most model20

parameters. Exceptions include RHQ10 (soil respiration associated parameter) at Lost
Creek shrubland site. Optimal RHQ10 for one-year experiments was close to that from
three-year experiments while they were different from that from two-year experiments.

3.5 Regional carbon dynamics

The regional NEP averaged over 2000–2008 in the conterminous United States is25

shown in Fig. 7. The regional NEP is partitioned according to different ecosystem types
(Fig. 7a) and different months (Fig. 7b). The regional total NEP was 0.21±0.004, 0.18±
0.002 and 0.20±0.007 PgCyr−1 from one-year, two-year and three-year experiments,
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respectively, suggesting that the regional NEP was sensitive to the length of calibra-
tion data. Furthermore, the difference between calibrated models using two-year and
three-year data was amplified at regional scales compared with that at site levels. At
site-level the model performance was only affected by increasing the length of calibra-
tion data from one year to two years. And, increasing the length of calibration data from5

two years to three years did not affect model calibration significantly (Fig. 2). However,
after extrapolating to US region, the difference in the modeled NEP between two-year
and three-year experiments (0.02 PgCyr−1) was comparable with the NEP difference
between one-year and two-year experiments (0.03 PgCyr−1).

For different ecosystem types (Fig. 7a), increasing the length of calibration data from10

one year to two years, the impact of data length on modeled NEP was high for conif-
erous forest, grassland, shrubland and boreal forest, but low for deciduous broadleaf
forests. The impacts of increasing the length of calibration data from two year to three
years are relatively high in deciduous broadleaf forest, grassland, shrubland and bo-
real forest, but relatively low for coniferous forests. In conclusion, grassland, shrubland15

and boreal forest were most sensitive to calibration data length at regional scales. For
boreal forests, different lengths of calibration data could even change the sign of NEP.

The calibration data length’s effect on regional NEP also changed with time (Fig. 7b):
(1) in January–March, May, September–December, the regional NEP was significantly
affected when calibration data length increased from one year to two years, but rela-20

tively less affected when calibration data length changed from two years to three years;
(2) On the contrary, in April and June the regional NEP with two-year calibration data
was close to that with one-year data and was significantly different from that with three-
year data; (3) the modeled NEP from one-year, two-year and three-year experiments
were all significantly different in July and August.25

6851

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/6835/2013/gmdd-6-6835-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/6835/2013/gmdd-6-6835-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 6835–6865, 2013

Impact of data on
model calibration

Q. Zhu and Q. Zhuang

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4 Conclusions

We studied the importance of characteristics of calibration data including data length
and data period in improving TEM model simulations of carbon fluxes and reducing
parameters uncertainties. First, we showed that TEM model calibration is sensitive to
calibration data length. The model was much better calibrated when using two-year5

data in comparison with using one-year data. We also found that two-year data were
sufficient for TEM calibration because the model was only marginally improved by using
three-year data at our study sites. Our results were generally consistent with previous
findings, such as Sorooshian et al. (1983) showed that the calibrations that increas-
ing the length of calibration data has not improved model significantly in comparison10

to using appropriate length of data. Optimal calibration data length also depends on
the variable being calibrated. For example, Xia et al. (2004) showed that soil mois-
ture, runoff and evapotranspiration required eight, three months, and one-year data in
order to obtain optimal parameters, respectively. Thus, our conclusion was made for
calibrating GPP and NEP of TEM. However this conclusion was insensitive to sites15

and ecosystem types. Using data with high climate variability is generally superior to
using data with low climate variability in improving model performance and reducing
model parameters uncertainty. However, the validity of this conclusion depended on
ecosystem types and the length of calibration data.

In the conterminous United States, the influence of calibration data length on carbon20

dynamics was amplified from site-level calibration. For different ecosystem types, the
impacts of data length on NEP were significantly different. Specifically, the simulated
NEP from grassland, shrubland and boreal forests were most sensitive to calibration
data length. For boreal forests, different lengths of calibration data could even change
the sign of the carbon and sink activities. The influence of calibration data length on25

the US NEP also changed with time. Regional NEP from one-year, two-year and three-
year experiments was significantly different in July and August and most sensitive to
calibration data length.
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Table 1. Key parameters associated with ecosystem processes of photosynthesis, autotrophic
respiration and heterotrophic respiration.

ID Acronym Definition Lower Upper Units
bound bound

1 CMAX Maximum rate of photosynthesis C 50 1500 gm−2 month−1

2 KI Half saturation constant for PAR used by plants 20 600 Jcm−2 day−1

3 KC Half saturation constant for CO2-C uptake by plants 20 600 µLL−1

4 ALEAF Coefficient A to model the relative photosynthetic capacity of vegetation 0.1 1.0 None
5 BLEAF Coefficient B to model the relative photosynthetic capacity of vegetation 0.1 1.0 None
6 CLEAF Coefficient C to model the relative photosynthetic capacity of vegetation 0.0 0.5 None
7 RAQ10 Leading coefficient of the Q10 model for plant respiration 1.350 3.3633 None
8 RHQ10 Change in heterotrophic respiration rate due to 10 ◦C temperature change 1 3 None
9 KR Plant respiration rate at 10 ◦C 0.0316 3.16×10−8 gm−2 month−1

10 KD Heterotrophic respiration rate at 10 ◦C 0.0005 0.007 gm−2 month−1
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Table 2. Description of AmeriFlux sites involved in this study.

ID Site name Location Ecosystem type PI Available Reference
data years

1 Harvard Forest 42.5◦ N, 72.2◦ W Deciduous broadleaf forest Munger, B. 1992–2006 Wofsy et al. (1993);
Goulden et al. (1996)

2 Howland Forest Main 45.2◦ N, 68.7◦ W Coniferous forest Hollinger, D. 1996–2004 Hollinger et al. (1999)
3 Vaira Ranch 38.4◦ N, 120.9◦ W Grassland Baldocchi, D. 2001–2007 Baldocchi et al. (2004)
4 Lost Creek 46.1◦ N, 90.0◦ W Shrubland Davis, K. 2001–2005 Davis et al. (2003)
5 UCI_1850 55.9◦ N, 98.5◦ W Boreal forest Goulden, M. 2002–2005 Goulden et al. (2006)
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Fig. 1. ClimVar (red bars) is the sum of absolute values of cloudiness variability (blue bars),
precipitation variability (light blue bars) and air temperature variability (yellow bars). The vari-
ability of each climate variable is calculated as the variance of the normalized variable. The
normalization is conducted by subtracting the mean and dividing by the standard deviation.
The normalized variables have mean of zero and standard deviation of one.
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Fig. 2. Empirical cumulative distribution function (CDF) of one-year (red line), two-year (green
line) and three-year (blue line) calibration experiments. The model performance (x axis) is eval-
uated with Root Mean Square Errors (RMSE) between model simulations and observations.
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Fig. 3. Empirical cumulative distribution function (CDF) of one-year (red line), two-year (green
line) and three-year (blue line) calibration experiments are grouped into two categories: (1)
category 1 refers to data ClimVar below mean and is shown with dash line; (2) category 2
refers to data ClimVar above mean and is shown with solid line.
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Fig. 4. Empirical cumulative distribution function (CDF) posterior model parameter uncertainty
reduction (defined as: (1− σpost

σprior ) ·100%) for one-year (red line), two-year (green line) and three-
year (blue line) calibration experiments.
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Fig. 5. Empirical cumulative distribution function (CDF) posterior model parameter uncertainty
reduction. Calibration experiments of one-year, two-year and three-year are divided into two
categories: (1) category 1 refers to data ClimVar below mean and is shown with dash line; (2)
category 2 refers to data ClimVar above mean and is shown with solid line.
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Fig. 6. Normalized optimal parameters of different ecosystem types including Deciduous
Broadleaf Forest (DBF), Coniferous Forest (CF), Grassland (G), Shrubland (S) and Boreal For-
est (BF). Mean and standard deviation of ten model parameters for calibration experiments of
one-year (red bar), two-year (green bar) and three-year (blue bar) are plotted.
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Fig. 7. Conterminous United States net ecosystem production (NEP) averaged over 2000–
2008. The left panel (a) is NEP of five different ecosystem types; the right panel (b) shows the
seasonal variation of US NEP for calibration experiments of one-year (red bar), two-year (green
bar) and three-year (blue bar). The error bar shows the standard deviation of modeled NEP.

6865

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/6835/2013/gmdd-6-6835-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/6835/2013/gmdd-6-6835-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

