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ABSTRACT
Soil phosphorus (P) plays a vital role in both ecological and agricultural ecosystems, where total P (TP) in soil serves as a crucial indicator of soil

fertility and quality. Most of the studies covered in the literature employ a single or narrow range of soil databases, which largely overlooks the impact of
utilizing multiple mapping scales in estimating soil TP, especially in hilly topographies. In this study, Fujian Province, a subtropical hilly region along China’s
southeast coast covered by a complex topographic environment, was taken as a case study. The influence of the mapping scale on soil TP storage (TPS)
estimation was analyzed using six digital soil databases that were derived from 3 082 unique soil profiles at different mapping scales, i.e., 1:50 000 (S5),
1:200 000 (S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and 1:10 000 000 (S1000). The regional TPS in the surface soil (0–20 cm) based
on the S5, S20, S50, S100, S400, and S1000 soil maps was 20.72, 22.17, 23.06, 23.05, 22.04, and 23.48 Tg, respectively, and the corresponding TPS at
0–100 cm soil depth was 80.98, 80.71, 85.00, 84.03, 82.96, and 86.72 Tg, respectively. By comparing soil TPS in the S20 to S1000 maps to that in the S5
map, the relative deviations were 6.37%–13.32% for 0–20 cm and 0.33%–7.09% for 0–100 cm. Moreover, since the S20 map had the lowest relative deviation
among different mapping scales as compared to S5, it could provide additional soil information and a richer soil environment than other smaller mapping
scales. Our results also revealed that many uncertainties in soil TPS estimation originated from the lack of detailed soil information, i.e., representation and
spatial variations among different soil types. From the time and labor perspectives, our work provides useful guidelines to identify the appropriate mapping
scale for estimating regional soil TPS in areas like Fujian Province in subtropical China or other places with similar complex topographies. Moreover, it is
of tremendous importance to accurately estimate soil TPS to ensure ecosystem stability and sustainable agricultural development, especially for regional
decision-making and management of phosphate fertilizer application amounts.
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INTRODUCTION

Soil phosphorus (P) plays a crucial role in both ecological
and agricultural ecosystems (Alewell et al., 2020), where the
global estimation of soil total P storage (TPS) is about 200
Pg (Kellogg and Bridgham, 2003). Any slight changes in the
P pool may have a significant impact on the biogeochemical
cycle (Stiles et al., 2017). Utilizing P fertilizers can promote
root growth and accelerate the growth of crops (Hansel et al.,
2017). However, a significant increase in soil total P (TP)
content in farmland was observed due to the overuse of
phosphate fertilizers (Ulén et al., 2016). According to the
Food and Agriculture Organization of the United Nations, the

applicable amount of phosphate fertilizer has substantially
increased, at least in the past decade (Mekouar, 2017). China
has a relatively high application rate of phosphate fertilizer
per unit cultivated land area (103.1 kg ha−1), which is much
higher than other countries such as the United States (30 kg
ha−1), Korea (60 kg ha−1), Japan (80 kg ha−1), and others
(Liu et al., 2014). Excessive fertilizer P application has led to
an accumulation of soil P in arable farming systems, which
can lead to potential water pollution. Transportation of P
from surface runoff to rivers and lakes usually accelerates
eutrophication and affects the utilization of water resources
such as drinking water, fishery, and leisure (Foy andWithers,
1995). Additionally, the continuous accumulation of P in
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soil could cause a reduction in soil quality (Hansel et al.,
2017). Soil TP, a major indicator of soil fertility and quality,
is generally used to represent the overall P levels in soil. As
compared to other soil properties, TP is distributed hetero-
geneously in soil, where the degree of variation is a function
of the study scale and/or its aspects (Liu et al., 2013). There-
fore, understanding soil TPS at regional scales in China is
important for reducing non-point source pollution, impro-
ving fertilizer P use efficiency, and optimizing P nutrient
management.

It is essential to have detailed spatial and attribute in-
formation about soil for many applications related to land
management (Lagacherie et al., 2007; Grunwald et al., 2011).
Over the past decade, quantitative soil mapping techniques
have advanced dramatically in both development and appli-
cation (Balkovič et al., 2013; Arrouays et al., 2021). A
digital soil mapping (DSM) method utilizes quantitative
models to relate observations of a soil type or property to
spatially exhaustive environmental data, whereas a digitized
conventional soil map (DCSM) gives information on how
soil properties are distributed in space by describing re-
presentative soil profiles associated with map units (Kempen
et al., 2012). Complex soil-forming processes might be dif-
ficult to quantify using environmental explanatory variables.
However, these complex processes can be easily addressed
in DCSM. Even though the complexity of TP in soil P cycles
have prompted a lot of interest in soil TPS estimation, only a
few studies have examined soil TPS at diverse spatial scales
(Schoumans et al., 2007; Osborne et al., 2011; Thomas
et al., 2016; Iticha and Takele, 2018). Stevenson and Cole
(1999) postulated that the TPS of global soil at 0–50 cm
was 50 Pg. Smil (2000) pointed out that the TPS in 1.5 ×
103 Mha of world arable soil was 5–6 Pg. At the national
level, Lin et al. (2009) used the data from 2 400 soil profiles
and the 1:1 000 000 (S100) soil mapping scale to estimate
soil TPS, which was found to be about 3.5 Pg at 0–50 cm in
China. Wang et al. (2008) suggested that soil TPS in Chi-
na was 5.3 Pg based on the data from 2 473 soil profiles
and the 1:4 000 000 soil mapping scale. Shangguan et al.
(2013) used a dataset of 8 979 soil profiles and the S100
soil mapping scale and estimated soil TPS to be 4.5 Pg
at 0–100 cm in China. At the regional level, Jia and Shao
(2014) showed that the soil TP content in the surface layer
(0–10 cm) was significantly higher than that in three subsur-
face layers (10–20, 20–30, and 30–40 cm) in the Northern
Loess Plateau of China. Additionally, Wei et al. (2021) also
confirmed the findings through a study in the Yellow River
estuary in China, indicating that the soil TP content in the
surface layer (0–10 cm) was significantly higher than that in
the other three layers (10–20, 20–30, and 30–50 cm).

However, existing studies were often conducted using
a single or a narrow range of scales of soil databases for

a specific agricultural region, which largely ignored the
impacts of using multiple mapping scales to estimate soil
TPS. While this may not be a concern for regions with relati-
vely homogeneous landscapes, the impact might be severe in
areas with complex and slope-rich topography. Some studies
indicated that the ability to represent soil properties differs
significantly at different mapping scales (Zhao et al., 2006).
Spatial variability of soil properties is expressed by map
delineations and map unit composition (Heuvelink, 1998).
The scale of the soil database not only directly affects the ac-
curacy of the soil type and area information, but also affects
the integration of soil attributes and spatial data (Zhao et al.,
2005). Additionally, changes in soil mapping scales may
affect the number of profiles considered in the estimation
process of soil TP density (TPD) (Zhao et al., 2006), which
would contribute to the overall variation in TPS among diffe-
rent soil mapping scales. Thus, the choice of soil mapping
scales used in soil TPS estimation at the regional scale may
lead to large uncertainties (Arnold, 1995). Therefore, it is
necessary to identify an appropriate soil mapping scale for
minimizing the uncertainty in the estimation of TPS in a
large region of slope-rich and complex topography.

To verify this hypothesis, the Fujian Province in China,
which has mountainous and hilly regions, was selected as
our study area. According to the statistics of the digital
elevation model (DEM), 87.16% of the region is in the
hill-mountain areas, 7.24% in the valley-basin areas, and
5.61% in the plain-platform areas (Long et al., 2018, 2020).
Then we used six soil databases at the scales of 1:50 000
(S5), 1:200 000 (S20), 1:500 000 (S50), S100, 1:4 000 000
(S400), and 1:10 000 000 (S1000) to compare the uncer-
tainties in soil TPS estimation among different mapping
scales. These scales contain all the basic national soil map-
ping scales in China. The core objectives of this study were
to i) quantify the effects of soil mapping scales on soil TPD
and TPS estimation for a particular area and ii) identify
appropriate soil mapping scales for soil TPD and TPS es-
timation in Fujian Province, a subtropical region of China
covered with complex and slope-rich topography.

MATERIALS AND METHODS

Study area

Fujian Province has a total area of 12.4 × 107 ha and is
located on the southeast coast of China (23◦33′–28◦20′ N,
115◦50′–120◦40′ E). It is characterized by a typical subtropi-
cal climate and encompasses nine cities, including Nanping,
Fuzhou, Longyan, Sanming, Quanzhou, Putian, Zhangzhou,
Xiamen, and Ningde. According to the statistics of 66 me-
teorological stations in Fujian Province, the mean annual
temperature (MAT), mean annual precipitation (MAP), and
frost-free duration are 14.6–21.3 ◦C, 1 037–2 051 mm, and
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300 d, respectively (Fig. S1, see Supplementary Material for
Fig. S1). The study area is covered by large, slope-rich, and
complex topography, with three typical landforms, namely
valley-basin, plain-platform, and hill-mountain (Fig. S2, see
Supplementary Material for Fig. S2). Previous publications
provide more information on these three landforms (Long
et al., 2018, 2020).

According to an S5 digital soil map, red soil covers
around 71% of the soil area in Fujian Province, making it the
dominant soil type in this region (Fig. S3, see Supplementary
Material for Fig. S3), whereas the paddy soil accounted for
about 80% of the total cultivated land soil area in Fujian
Province. According to the soil reference derived from the
Genetic Soil Classification of China (GSCC) system, the
GSCC nomenclature, as well as the World Reference Base
Soil Taxonomy system, we obtained 12 soil groups in the
study area, including coastal saline soil (Gleyic Solonchak),
fluvo-aquic soil (Arenic Fluvisol), latosolic red soil (Ferric
Acrisol), aeolian sandy soil (Gleyic Solonchak), mountain
meadow soil (Leptic Cambisol), limestone soil (Eutric Cam-
bisol), Entisol (Arenic Fluvisol), skeleton soil (Skeletic
Regosol), purplish soil (Eutric Cambisol), red soil (Alumic
Acrisol), paddy soil (Anthrosol), and yellow soil (Dystric
Cambisol) (Huang et al., 2017).

Data source

Data from 3 082 soil profiles were obtained from the
Second National Soil Census in China, which was the most
extensive and comprehensive soil survey ever conducted
in China between 1980 and 1999 (Zhao et al., 2006; Zhi
et al., 2014). Soil maps in China are compiled at six mapping
scales for different administrative divisions, including county
level of S5, district level of S20, province level of S50, and
national levels of S100, S400, and S1000 (Zhao et al., 2006)
(Table I). The soil maps at different spatial scales (i.e.,
county, district, provincial, and national scales) from the
Second National Soil Census in China in the 1980s are the
most important data sources (Zhi et al., 2014). Additionally,
changes in the mapping scale of soil datasets were associated
with an increase (or decrease) in the number of profiles as
they are linked to polygon spatial extent (Xu et al., 2013). We
found that the soil polygons in the S5, S20, S50, S100, S400,

and S1000 maps in Fujian Province were 247 969, 46 408,
15 282, 6 343, 440, and 345, respectively (Fig. S3). The
corresponding number of soil profiles were 3 082, 3 082,
2 718, 2 547, 1 000, and 890, respectively (Table I).

The soil maps were established by ArcGIS 12.0. A labor-
intensive effort was taken to produce the six maps of the
soil database, consuming almost 7 years and over 30 people
to collect and digitize the historical document of soil maps
and soil profiles. We developed the soil attributes at the six
mapping scales by a pedological knowledge-based (PKB)
method (Zhao et al., 2006) (Fig. 1), where the soil properties
in each polygon included a wide range of information, such as
the soil name, profile location, horizon thickness, TP content,
organic matter (OM) content, clay content, bulk density
(BD), pH, etc. The soil TP content in different databases was
measured using themethod of oxidation by sodium hydroxide
(NaOH) pellets with the molybdate autoanalyzer after the
samples were air-dried and the animal and plant residues
were removed, crushed, and sieved through a 0.25-mm filter
(Blakemore et al., 1987).

Figure 1 shows the linking process using the PKB me-
thod. For profile C1 and two polygons of map unit C (one
profile to multi-polygons), the soil property values of the
profile will be linked to each of these two polygons of map
unit C. For profiles B1 and B2, there is only one polygon
of map unit B (multi-profile to one polygon). The mean
soil property values of profiles B1 and B2 will be linked to
the polygon B. For profiles such as A1, A2, and A3, there
are two related polygons of map unit A (multi-profile to
multi-polygons). A1 will be linked to the polygon of map
unit A located in the top left corner of the map, and A3 will
be linked to the polygon in the bottom right corner of the map
(a simple point-in-polygon selection was included). Profile
A2 will also be linked to the polygon at the top left corner
according to the coexistence or adjacency in the distribution
area based on the information recorded in the county, district,
provincial, or national soil series. Thereby, the mean soil
property values of profiles A1 and A2 will be linked to the
polygon of map unit A located on the top left corner of the
map. Using the PKB method, polygons with different spatial
locations, but belonging to the same map unit, may obtain
different soil property values (Zhao et al., 2006).

TABLE I

Differences among various soil mapping scales in Fujian Province, China

Mapping scale Soil map sources Number of
polygons

Number of
soil profiles

Basic mapping
unit

1:50 000 (S5) Soil Census Office of Fujian Province, China (1990) 247 969 3 082 Soil species
1:200 000 (S20) Soil Census Office of Fujian Province, China (1990) 46 408 3 082 Soil genus
1:500 000 (S50) Soil Census Office of Fujian Province, China (1990) 15 282 2 718 Soil genus
1:1 000 000 (S100) The Second National Soil Census Office of China (1995) 6 343 2 547 Soil genus
1:4 000 000 (S400) Institute of Soil Science, Chinese Academy of Sciences (1978) 440 1 000 Soil subgroup
1:10 000 000 (S1000) Institute of Soil Science, Chinese Academy of Sciences (1988) 345 890 Soil subgroup
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Fig. 1 Schematic diagram of the pedological knowledge-based method to link soil profiles with polygons (adopted from Zhao et al., 2006). A1–A3 =

profiles belonging to map unit A; B1 and B2 = profiles belonging to map unit B; C1 = profile belonging to map unit C.

Sample analysis

Soil TPD (kg m−3) was calculated with Eq. 1 (Lin et al.,
2009):

TPDi =

n∑
i=1

(HiBiOi)

n∑
i=1

Hi × 10
(1)

where i is the order of polygons (i = 1, 2, 3, . . . , n), and Hi

(cm), Bi (g cm−3), and Oi (g kg−1) are the soil thickness,
BD, and TP content in the ith polygon, respectively, at 0–20
or 0–100 cm.

Soil TPS (kg) at different mapping scales was calculated
using Eq. 2:

TPS =
n∑

i=1

TPDi × Si (2)

where Si is the distribution area (m2) of the ith polygon.
The accuracy of P estimations using the six soil databases

was analyzed using the most detailed digital soil map (S5) as
a reference estimation (Zhi et al., 2014; Chen et al., 2022).
The relative change (Y ) of soil TPD, TPS, and area between
different mapping scales was estimated according to Eq. 3:

Y = ABS(Xs −Xo)/Xo × 100 (3)

where ABS is the absolute function, Xo is the soil TPD,
TPS, or area based on the S5 map, andXs is the soil TPD,
TPS, or area based on other databases, such as the S20, S50,
S100, S400, and S1000 maps.

To quantify the influence of different mapping scales on
the regional estimation of soil TPS, the Student’s t-test was
conducted to test the significance of differences between soil
TPS estimated with S5 and those with other mapping scales
using the SPSS statistical software (Leech et al., 2015).

Model verification

To consolidate the quantification and accuracy of the
mapping scale, we simulated soil maps of soil TPD at diffe-

rent mapping scales (S5, S20, S50, S100, S400, and S1000)
for upland soils (0–20 cm) in Minhou County located in the
middle of Fuzhou, Fujian Province, China and compared
them with the observations obtained from 400 upland soil
sampling sites in the year of 1982, the Ministry of Agri-
culture of China (Fig. 2). Two statistical metrics, the root
mean square error (RMSE) (Loague and Green, 1991) and
r (Gollany and Elnaggar, 2017), were used to measure the
differences between observed and simulated soil TPD values
at different mapping scales. The RMSE was defined as:

RMSE =

√√√√ n∑
i=1

(Xoi −Xsi)2

n
(4)

whereXoi andXsi represent the observed and simulated soil
TPD values for the sample i, respectively, and n represents
the total 400 numbers in the sequence of the observed and
simulated data pairs. Greater r values and the smaller RMSE
values suggest better agreement between the observed and
simulated TPD values.

Fig. 2 Verification points for consolidating the quantification and accuracy
of mapping scales in Minhou County, Fuzhou City, Fujian Province, China.



240 Z. X. CHEN et al.

RESULTS AND DISCUSSION

Accuracy verification

Soil TPD maps for upland soils (0–20 cm) in Minhou
County in 1982 were constructed based on the simulated
data from the S5–S1000 soil databases. Figure 3 shows
that S5–S1000 mapping scales simulated TPD for the 400
soil sampling sites, mostly varying from 0.01 to 0.40 kg
m−3, which was close to their observational range of 0.01–
0.23 kg m−3. In particular, S5, S50, and S100 showed good
simulations with a significant (P = 0.05) correlation to
observations. Accordingly, all the RMSE values were low
(0.038 87–0.125 19 kg m−3).

Effects of mapping scales on soil TP estimation

Our research indicated that the area-weighted average
of the TP content in the surface soil (0–20 cm) were 0.68,
0.67, 0.71, 0.70, 0.68, and 0.71 g kg−1 based on S5, S20,
S50, S100, S400, and S1000 soil maps in Fujian Province,
respectively (Fig. 4). Correspondingly, the TP content at
0–100 cm soil depth was 0.51, 0.49, 0.54, 0.53, 0.51, and
0.52 g kg−1, respectively. Table II shows the TP content and
area of different soil types at six mapping scales. Referring
to S5, we found that the TP content and the area of different
soil types also changed with changing mapping scales, which
is related to generalization. Soil properties are spatially
variable, which is expressed by how map units are defined
and how the composition of map units varies with mapping
scales. A soil map with a fine scale may merge soil types

with small areas into their neighboring soil types (Heuvelink
1998; Zhao et al. 2006; Zhong and Xu 2011). As a result of
this mapping scale effect, different soil types are allocated
to different areas and attributes, causing the estimated soil
TP to be substantially distorted. This enrichment of surface
soil can be explained by P inputs, such as fertilizer, animal
manure, or grazing (Wang et al., 2011). The TP content in the
0–20 and 0–100 cm soil layers in Fujian province is deficient,
according to the standard issued by the Second National Soil
Census in China. Compared with areas of similar climate
zones and geography in China, soil TP content over the entire
study area was higher than that in the adjacent Zhujiang
County of Guangdong Province in southeastern China in
2009 (335.8–1 190.1mg kg−1 at 0–10 cm) (Gao et al., 2015),
but lower than that in Yuanxishan County of Jiangsu Province
(China) in 1982 (1.14 g kg−1 at 0–20 cm) (Zhang et al.,
2007). Some researchers discovered that low soil P content
could limit ecosystem productivity in tropical and subtropical
areas in China (Peng et al., 2013). This phenomenon can be
explained by: i) the tremendous changes in land use in recent
years, which may be an important controlling factor for the
low P content (MacDonald et al., 2012), ii) the long-term
rainfall increase in the wet season, increasing soil organic P
accumulation, which in turn further reduces soil P availability
for plant uptake in the tropical forests (Sun et al., 2020), and
iii) microbial processes controlling P availability as affected
by soil depth and properties (Achat et al., 2012). Moreover,
90 724 ha of woodland in Southeast China, most of which
were located in the tropical and subtropical regions, were

Fig. 3 Comparison between the observed and simulated soil total P density (TPD) based on soil databases at different mapping scales, 1:50 000 (S5),
1:200 000 (S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and 1:10 000 000 (S1000), in Minhou County, Fuzhou City, Fujian Province,
China. RMSE = root mean square error.
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Fig. 4 Soil total P (TP) contents at 0–20 and 0–100 cm soil depths based on soil databases at different mapping scales, 1:50 000 (S5), 1:200 000 (S20),
1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and 1:10 000 000 (S1000), in Fujian Province, China.

TABLE II

Soil total P (TP) contents at 0–20 and 0–100 cm soil depths and area for the whole region and different soil types based on soil databases at different mapping
scales, 1:50 000 (S5), 1:200 000 (S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and 1:10 000 000 (S1000), in Fujian Province, China

Mapping
scale

Soil
depth

Item Coastal
saline
soil

Fluvo-
aquic
soil

Latosolic
red soil

Skeleton
soil

Aeolian
sandy
soil

Red
soil

Yellow
soil

Mountain
meadow
soil

Lime-
stone
soil

Paddy
soil

Entisol Purplish
soil

Whole
region

cm
S5 0–20 TP (g kg−1) 0.61 0.68 0.57 0.53 0.34 0.68 0.69 0.63 1.18 0.77 0.80 0.82 0.68

0–100 TP (g kg−1) 0.46 0.48 0.43 0.16 0.21 0.51 0.41 0.26 0.49 0.59 0.54 0.50 0.51
Area (Mha) 0.12 0.020 0.69 0.000 1 0.053 8.63 0.61 0.008 5 0.016 1.80 0.003 4 0.14 12.08

S20 0–20 TP (g kg−1) 0.67 0.51 0.40 0.66 0.29 0.68 0.71 0.76 0.73 0.75 0.38 0.79 0.67
0–100 TP (g kg−1) 0.37 0.33 0.29 0.46 0.15 0.50 0.38 0.73 0.38 0.57 0.32 0.48 0.49

Area (Mha) 0.17 0.006 4 0.75 0.006 1 0.050 8.06 0.83 0.007 2 0.005 2 2.00 0.005 3 0.17 12.06
S50 0–20 TP (g kg−1) 0.64 0.52 0.50 0.69 0.26 0.71 0.79 1.01 0.93 0.78 – 0.83 0.71

0–100 TP (g kg−1) 0.50 0.35 0.44 0.39 0.15 0.57 0.44 0.33 0.36 0.56 – 0.47 0.55
Area (Mha) 0.23 0.008 1 0.75 0.26 0.052 7.98 0.61 0.007 0 0.008 3 2.24 – 0.15 12.30

S100 0–20 TP (g kg−1) 0.56 0.45 0.56 0.77 0.29 0.68 0.68 0.76 0.82 0.80 – 0.77 0.70
0–100 TP (g kg−1) 0.43 0.20 0.40 0.60 0.20 0.54 0.43 0.26 0.43 0.57 – 0.44 0.53

Area (Mha) 0.049 0.002 5 0.78 0.24 0.033 8.08 0.54 0.005 9 0.008 95 2.20 – 0.16 12.10
S400 0–20 TP (g kg−1) – – 0.48 – 0.29 0.67 0.73 – 0.95 0.96 – – 0.68

0–100 TP (g kg−1) – – 0.35 – 0.29 0.52 0.38 – 0.37 0.71 – – 0.51
Area (Mha) – – 1.34 – 0.28 8.85 0.64 – 0.021 1.04 – – 11.92

S1000 0–20 TP (g kg−1) – – 0.53 – – 0.71 0.85 – – 0.88 – – 0.71
0–100 TP (g kg−1) – – 0.43 – – 0.54 0.46 – – 0.78 – – 0.52

Area (Mha) – – 2.23 – – 6.70 2.16 – – 0.97 – – 12.06

converted into farmland between 1990 and 1995 (Cheng
et al., 2018). The high erosion rate of deforested lands may
threaten soil productivity in this region (Lemenih, 2004) and
even cause a decrease in soil TP content (Peng et al., 2013).

Effects of mapping scales on soil TPD and TPS estimation
in the whole region

The S5 map was regarded as the most trustworthy and
detailed soil database across a vast area of China (Zhi et al.,
2014). The estimation based on the S5 map indicated that
the TPS in the soil layers of 0–20 and 0–100 cm was 20.72
and 80.98 Tg, with the average TPD of 0.17 and 0.67 kg
m−3, respectively, in Fujian Province. The TPD at 0–100 cm
in Fujian Province was lower than the average TPD at the
same soil depth in China (0.83 kg m−3) (Zhang et al., 2005)
due to the high temperature and precipitation in subtropical

regions which facilitate soil weathering and P loss through
soil erosion (Neufeldt et al., 2000; Lehmann et al., 2001).

The spatial distribution of TPD in the S5 map exhibited
large differences in surface soil, where the difference was
over 170 times between the highest (0.85 kg m−3) and the
lowest (0.005 kg m−3) values (Fig. S4, see Supplementary
Material for Fig. S4). Furthermore, we evaluated the corre-
lations between soil TPD and influential factors based on the
S5 mapping scale, such as altitude (ALT), complete organic
and nitrogenous fertilizers (COF and NF, respectively), soil
OM, soil bulk density (BD), MAT, and MAP (Table III).
The highest soil TPD (> 0.4 kg m−3) was mainly distri-
buted in the northern, western, and southwestern regions
of Fujian Province, accounting for 6.17% of the total soil
area in the study region (Fig. S4), which may be related to
the low temperature and high elevation of the northwestern
and western Fujian Province (Figs. S1 and S2). Accordingly,
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TABLE III

Correlation coefficients between soil total P density and different influential factorsa) at 0–20 and 0–100 cm soil depths for the whole region, different soil
types, and different administrative areas in Fujian Province, China

Item ALT Slop COF NF SOM Soil pH MAT MAP

0–20 cm
Whole region 0.024∗ −0.051∗ −0.083∗ 0.058∗ 0.209∗ 0.175∗ −0.007∗ 0.010
Soil type

Coastal saline soil −0.016 0.171∗ −0.279∗ −0.404∗ 0.790∗ −0.173∗ −0.374∗ 0.276∗
Fluvo-aquic soil −0.087∗ −0.052∗ −0.113∗ 0.150∗ −0.011 −0.210∗ 0.103∗ 0.012
Latosolic red soil 0.056∗ 0.051∗ 0.063∗ 0.125∗ 0.213∗ 0.124∗ −0.093∗ 0.129∗
Skeleton soil −0.143 0.632∗ − − 1.000∗ 0.722∗ −0.347 −0.627∗
Aeolian sandy soil −0.076∗ 0.222∗ −0.271∗ −0.070∗ 0.08∗ −0.047 −0.367∗ 0.427∗
Red soil −0.016∗ −0.042∗ −0.057∗ 0.043∗ 0.052∗ 0.038∗ 0.075∗ −0.060∗
Yellow soil −0.035 −0.036 0.065∗ 0.167∗ 0.006 −0.016 0.121∗ −0.191∗
Mountain meadow soil 0.021 −0.010 −0.350∗ −0.113 −0.177 −0.188 −0.265∗ 0.376∗
Limestone soil −0.479∗ −0.376∗ 0.381∗ 0.262∗ −0.234∗ 0.283∗ 0.423∗ −0.177∗
Paddy soil 0.014∗ −0.068∗ −0.077∗ 0.068∗ 0.266∗ 0.241∗ −0.005∗ 0.114∗
Entisol −0.109 0.016 −0.068 0.287∗ 0.397∗ 0.330∗ 0.157∗ −0.011
Purplish soil −0.193∗ −0.060∗ 0.040 0.023 −0.036 0.096∗ 0.213∗ −0.260∗

Administrative area
Fuzhou 0.043∗ 0.025∗ −0.090∗ 0.020∗ 0.207∗ 0.553∗ 0.115∗ −0.001
Longyan −0.129∗ −0.168∗ 0.223∗ −0.257∗ 0.094∗ 0.397∗ −0.277∗ 0.285∗
Nanping −0.106∗ −0.115∗ 0.046∗ 0.195∗ 0.183∗ 0.094∗ −0.022∗ 0.168∗
Ningde 0.095∗ −0.026∗ −0.102∗ −0.023∗ 0.098∗ 0.006 −0.147∗ 0.188∗
Putian −0.064∗ −0.059∗ −0.029∗ 0.174∗ −0.021 0.328∗ 0.265∗ 0.185∗
Quanzhou −0.007 −0.025∗ 0.061∗ 0.027∗ 0.186∗ 0.006 0.024∗ −0.051∗
Sanming −0.006 −0.071∗ −0.079∗ −0.051∗ 0.088∗ 0.097∗ −0.141∗ 0.207∗
Xiamen 0.102∗ 0.104∗ −0.001 −0.011 0.501∗ −0.255∗ 0.047∗ 0.104∗
Zhangzhou 0.045∗ −0.010 −0.152∗ 0.253∗ 0.482∗ 0.064∗ −0.076∗ 0.145∗

0–100 cm
Whole region −0.026∗ −0.060∗ −0.064∗ 0.034∗ 0.134∗ 0.168∗ 0.045∗ 0.055∗
Soil type

Coastal saline soil 0.054∗ 0.243∗ −0.187∗ −0.286∗ 0.740∗ 0.088∗ −0.297∗ 0.282∗
Fluvo-aquic soil −0.037 −0.040 −0.161∗ 0.136∗ 0.069∗ 0.037 0.028 0.168∗
Latosolic red soil 0.040∗ 0.044∗ −0.081∗ 0.044∗ 0.185∗ 0.125∗ 0.132∗ 0.130∗
Skeleton soil −0.184 −0.561∗ − − 0.504∗ 0.951∗ 0.671∗ 0.819∗
Aeolian sandy soil −0.218∗ 0.143∗ −0.192∗ 0.057 0.035 0.349∗ −0.092∗ 0.117∗
Red soil −0.074∗ −0.110∗ −0.076∗ −0.001 0.113∗ 0.045∗ 0.008 −0.021∗
Yellow soil −0.072∗ −0.078∗ 0.093∗ 0.050∗ 0.065∗ 0.259∗ 0.132∗ −0.113∗
Mountain meadow soil −0.302∗ 0.168 −0.084 −0.081 0.301∗ 0.063 −0.283∗ −0.036
Limestone soil −0.574∗ −0.463∗ 0.418∗ 0.339∗ 0.334∗ 0.142 0.578∗ −0.304∗
Paddy soil −0.032∗ −0.066∗ −0.038∗ 0.053∗ 0.125∗ 0.215∗ 0.081∗ 0.043∗
Entisol −0.019 −0.113 −0.109 0.198∗ 0.237∗ −0.305∗ 0.115 0.068
Purplish soil 0.053 0.095∗ 0.167∗ 0.168∗ 0.351∗ 0.094∗ 0.185∗ −0.217∗

Administrative area
Fuzhou 0.026∗ 0.037∗ −0.126∗ −0.045∗ 0.053∗ 0.272∗ 0.098∗ 0.010
Longyan −0.115∗ −0.102∗ 0.166∗ −0.257∗ 0.058∗ 0.303∗ −0.183∗ 0.217∗
Nanping −0.114∗ −0.129∗ 0.013∗ 0.024∗ 0.135∗ 0.027∗ −0.121∗ 0.150∗
Ningde −0.102∗ −0.026∗ 0.076∗ 0.140∗ 0.124∗ 0.153∗ 0.125∗ −0.067∗
Putian 0.097∗ −0.010 −0.023∗ 0.186∗ 0.390∗ −0.172∗ 0.091∗ 0.233∗
Quanzhou −0.016∗ −0.045∗ 0.011 −0.003 0.234∗ 0.023∗ 0.073∗ −0.079∗
Sanming −0.036∗ −0.058∗ −0.070∗ −0.048∗ −0.046∗ 0.209∗ −0.114∗ 0.143∗
Xiamen −0.054∗ −0.083∗ 0.167∗ 0.003 0.334∗ −0.261∗ 0.056∗ 0.003
Zhangzhou −0.045∗ −0.072∗ −0.101∗ 0.256∗ 0.259∗ 0.292∗ −0.075∗ 0.045∗

∗Significant at P < 0.05.
a)ALT= altitude; COF= complete organic fertilizer; NF= nitrogenous fertilizer; SOM= organic matter; MAT= mean annual temperature; MAP= mean
annual precipitation.

correlation analysis showed significant positive and negative
relationships of TPD with ALT and MAT, respectively (Ta-
ble III). In addition, the high ALT and low temperature can
promote the accumulation of SOM (Klimek et al., 2020).
Some studies also showed that OM can form an adhesive
film on the surface of mineral particles to prevent mineral
components from fixing P to increase soil P content (Fink
et al., 2016). This was consistent with the significant positive

relationship between TPD and OM (Table III). Similarly,
fertilizer application can lead to enhanced soil organic carbon
(OC) content in subtropical regions by increasing biomass
carbon and thus boosting carbon return to the soil (Manna
et al., 2005; Rudrappa et al., 2006; Jiang et al., 2017), con-
tributing to the positive relationship between TPD and NF.
The lowest TPD (< 0.1 kg m−3) was mainly distributed in
the southeast of Fujian Province and accounted for 35.68%
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of the total area in the study region (Fig. S4). This may
be due to the lower ALT, higher MAT, and abundant MAP
in the southeastern region (Fig. S1), which may accelerate
the decomposition of soil liable OM and adversely affect
the accumulation of TP (Neufeldt et al., 2000; Lehmann
et al., 2001). In addition to LAT and MAT, Table III shows
a significant positive relationship between TPD and MAP.
Furthermore, nitrogen fertilization application and pH are
also beneficial to TPD, which could be obtained from the
significant relationships between TPD and pH (Table III).
Previous studies indicated that nitrogen fertilization syn-
chronously causes soil acidification and soil OC accrual.
Soil acidification increases soil OC content by decreasing its
decomposition, acting as a linkage between nitrogen fertili-
zation and soil OC accumulation (Han et al., 2005; Zhang
et al., 2020).

Similarly, the spatial distribution of TPD also exhibited
large differences at 0–100 cm (Fig. S5, see Supplementary
Material for Fig. S5), where the difference between the
highest (0.94 kg m−3) and the lowest (0.008 kg m−3) values
was over 118 times. The highest TPD (> 2.0 kg m−3) was
mainly distributed in the northern, western, and southwestern
regions of Fujian Province and accounted for 3.78% of the
total area in the study area. The lowest TPD (< 0.5 kg m−3)
was mainly distributed in the southeastern, eastern, and
northeastern regions of Fujian Province and accounted for
49.14% of the total area in the study region. This is generally
consistent with previous studies where soil TPD gradually
decreased from the northern to the southern region of China
(Zhang et al., 2005).

Soil TPD and TPS estimation was affected by the spatial
heterogeneity of soil P content represented in different maps
(Figs. 4–6). When the mapping scale was reduced from S5 to
S1000, the spatial distributions of TPD at 0–20 and 0–100 cm
were obviously different. The Student’s t-test showed that the
TPD estimation in the S5 map was significantly (P < 0.001)

Fig. 5 Soil total P storage (TPS) at 0–20 and 0–100 cm soil depths based
on soil databases at different mapping scales, 1:50 000 (S5), 1:200 000
(S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and
1:10 000 000 (S1000), in Fujian Province, China.

Fig. 6 Soil total P density (TPD) at 0–20 and 0–100 cm soil depths based
on soil databases at different mapping scales, 1:50 000 (S5), 1:200 000
(S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and
1:10 000 000 (S1000), in Fujian Province, China.

different from those in other maps (Table IV). In addition,
the S5 map was used as the reference for comparing the
outcomes since it was the most detailed map. As a result,
the relative deviations of S20, S50, S100, S400, and S1000
maps were 7.20%, 9.33%, 11.10%, 7.81%, and 13.54%,

TABLE IV

Results of the Student’s t-test for soil total P density estimation at 0–20 and 0–100 cm soil depths based on soil databases at different mapping scales, 1:50 000
(S5), 1:200 000 (S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and 1:10 000 000 (S1000), in Fujian Province, China

Soil depth Mapping scale Average Standard deviation Coefficient of variation F value T value P value

cm kg m−3 %
0–20 S5 0.194 0.138 71 – – –

S20 0.190 0.138 73 3.2 5.7∗∗∗ 0.000
S50 0.192 0.152 79 176 1.5∗∗∗ 0.000
S100 0.177 0.125 70 53 10∗∗∗ 0.000
S400 0.150 0.115 76 24 7.9∗∗∗ 0.000
S1000 0.111 0.110 98 3.4 11∗∗∗ 0.000
S5 0.754 0.626 83 – – –

0–100 S20 0.716 0.618 86 37 12∗∗∗ 0.000
S50 0.672 0.600 89 146 16∗∗∗ 0.000
S100 0.665 0.537 81 212 13∗∗∗ 0.000
S400 0.546 0.403 74 56 11∗∗∗ 0.000
S1000 0.406 0.449 111 23 14∗∗∗ 0.000

∗∗∗Significant at P < 0.001.
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respectively, at 0–20 cm and 0.14%, 3.10%, 3.60%, 3.83%,
and 7.29%, respectively, at 0–100 cm. The highest deviations
of soil TPD and TPS were linked to the S1000 map. This
is because the soil types with small polygons were merged
into the larger polygons when the map downscaled (Table I).
According to the statistics, eight soil groups of skeleton soil,
coastal saline soil, fluvo-aquic soil, purplish soil, Entisol,
mountain meadow soil, limestone soil, and aeolian sandy
soil in the S5 map were merged into other soil groups in the
S1000 map. Such a “scaling effect” caused the attribute and
area variations of different soil types, especially the coarse
soil maps missing relatively small soil patches containing
low or high P content, which are sensitive to TPS estimation
(Tables I and V). Some researchers also showed that the
choice of soil mapping scales can lead to uncertainty in the
estimation result, which is significantly influenced by the
number of mapping units and the spatial distribution area at
different mapping scales (Arnold, 1995; Huang et al., 2014).
Additionally, the number of soil profiles applied to derive P
content differs significantly among various mapping scales
(Table I). The number of soil profiles in the S5, S20, S50,
S100, S400, and S1000 maps in Fujian Province is 3 082,
3 082, 2 718, 2 547, 1 000, and 890, respectively, which
certainly can lead to a discrepancy in soil TPS estimation
across the six mapping scales. Overall, we recommend S20
for soil TPS estimation in the Fujian Province of China due
to the lower relative deviation. Moreover, allowing for data
availability and estimation, S100 is also strongly recom-
mended at the provincial level since it is the most detailed
available soil database that covers all the locations in China
(Yu et al., 2007).

Effects of mapping scales on TPD and TPS estimation in
different soil types

The mapping scale impacts on soil TPD estimation
exhibited substantial differences in the twelve soil types (Fig.

S3). Soil TPD was influenced by soil attributes and area
variations in different soil types and was accompanied by the
reduction of mapping scales from S5 to S1000 (Table VI).
Usually, with digitizing original coarse scale maps, such as
the S1000, S400, or S100 map, fewer soil polygons can be
recognizable. Under such circumstances, dendritic, banded,
and tiny spotted soil polygons are considered to be merged
into nearby larger polygons, even into different soil types,
when the map downscales (Hennings, 2002; Häring et al.,
2012). Such differences would be propagated into soil TPD
estimate. The TPD of different soil types ranged from 0.09 to
0.31 kg m−3 at the S5 mapping scale (Table VI). However,
the spatial distribution of different soil types was obviously
different when the mapping scales were reduced from S5 to
S1000 (Fig. 4). The skeleton soil had the greatest influence
on TPD estimation at different mapping scales, where the
TPD in the S100 map is over 1.55 times that in the S5 map.
Additionally, the TPS of the skeleton soil in the S100mapwas
over 3 341 times larger than that in the S5 map (Table VI).
The area of the skeleton soil in the S100map was much larger
than that in the S5 map. This also demonstrates that soil
database precision is important for governments or related
units to implement agricultural management measures at a
regional scale. Furthermore, although soil maps with coarse
resolution could provide useful information for predicting the
spatial distribution of TPD, these data might be too coarse
for the basic management units to implement the government
policies in the study area (Miller et al., 2015).

The red soil in the S5 map accounted for 71.40% of the
total area in Fujian Province (Table VI). The TPS of red
soils at 0–20 and 0–100 cm was increased from S5 to S1000
mapping scales (Table VI) due to the mergence of some
polygons of the paddy soil, yellow soil, and latosolic red
soil into the red soil, leading to the high relative deviations

TABLE V

Relative deviations of the areas estimated at the mapping scales of 1:200 000 (S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and
1:10 000 000 (S1000) compared to the area estimated at 1:50 000 (S5) for the whole region and different soil types in Fujian Province, China

Item Relative deviation

S20 S50 S100 S400 S1000

%
Whole region 0.20 1.81 0.16 1.34 0.02
Soil type

Coastal saline soil 45.22 102.53 57.53 – –
Fluvo-aquic soil 67.85 59.69 87.37 – –
Latosolic red soil 8.39 7.66 12.43 93.29 22.14
Skeleton soil 5 462.04 237 718.72 214 862.59 – –
Aeolian sandy soil 4.06 0.15 36.83 46.44 –
Red soil 6.57 7.45 6.33 2.56 2.23
Yellow soil 37.35 0.95 10.85 5.82 25.56
Mountain meadow soil 15.17 18.07 31.11 – –
Limestone soil 66.55 46.95 43.26 31.96 –
Paddy soil 10.69 24.20 21.99 42.18 4.61
Entisol 53.60 – – – –
Purplish soil 23.85 8.16 21.56 – –
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TABLE VI

Soil total P storage (TPS) and total P density (TPD) at 0–20 and 0–100 cm soil depths and area for the whole region and different soil types based on soil
databases at different mapping scales, 1:50 000 (S5), 1:200 000 (S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and 1:10 000 000 (S1000),
in Fujian Province, China

Mapping
scale

Soil
depth

Item Coastal
saline
soil

Fluvo-
aquic
soil

Latosolic
red soil

Skeleton
soil

Aeolian
sandy
soil

Red
soil

Yellow
soil

Mountain
meadow
soil

Lime-
stone
soil

Paddy
soil

Entisol Purp-
lish
soil

Whole
region

cm
S5 0–20 TPS (Tg) 0.18 0.035 1.03 0.000 105 0.048 14.53 1.005 0.012 0.048 3.52 0.007 1 0.29 20.72

TPD (kg m−3) 0.16 0.18 0.15 0.14 0.090 0.17 0.17 0.15 0.31 0.20 0.21 0.21 0.17
0–100 TPS (Tg) 0.71 0.13 4.04 0.000 203 0.15 57.78 3.22 0.027 0.10 13.91 0.025 0.90 80.98

TPD (kg m−3) 0.61 0.64 0.58 0.21 0.29 0.67 0.53 0.31 0.66 0.77 0.72 0.67 0.67
Area (Mha) 0.12 0.020 0.69 0.000 1 0.053 8.63 0.61 0.008 5 0.016 1.80 0.003 4 0.14 12.08

S20 0–20 TPS (Tg) 0.31 0.009 0.82 0.011 0.040 14.89 1.61 0.015 0.010 4.08 0.005 55 0.36 22.16
TPD (kg m−3) 0.19 0.14 0.11 0.18 0.080 0.18 0.19 0.21 0.20 0.20 0.10 0.21 0.18

0–100 TPS (Tg) 0.85 0.029 3.04 0.038 0.10 55.51 4.35 0.072 0.028 15.58 0.023 1.10 80.92
TPD (kg m−3) 0.50 0.46 0.40 0.63 0.21 0.69 0.52 0.99 0.53 0.78 0.44 0.66 0.67
Area (Mha) 0.17 0.006 4 0.75 0.006 1 0.050 8.06 0.83 0.007 2 0.005 2 2.00 0.005 3 0.17 12.06

S50 0–20 TPS (Tg) 0.41 0.011 1.02 0.49 0.038 14.61 1.31 0.019 0.021 4.79 – 0.33 23.06
TPD (kg m−3) 0.18 0.14 0.14 0.19 0.072 0.18 0.21 0.27 0.25 0.21 – 0.23 0.19

0–100 TPS (Tg) 1.56 0.038 4.38 1.34 0.11 56.46 3.53 0.028 0.039 16.60 – 0.91 85.00
TPD (kg m−3) 0.66 0.47 0.59 0.51 0.21 0.71 0.58 0.40 0.47 0.74 – 0.62 0.69
Area (Mha) 0.23 0.008 1 0.75 0.26 0.052 7.98 0.61 0.007 0.008 3 2.24 – 0.15 12.30

S100 0–20 TPS (Tg) 0.076 0.003 1 1.19 0.49 0.027 15.06 1.006 0.012 0.020 4.82 – 0.35 23.05
TPD (kg m−3) 0.15 0.12 0.15 0.21 0.081 0.18 0.18 0.21 0.22 0.22 – 0.21 0.19

0–100 TPS (Tg) 0.29 0.005 4 4.10 1.50 0.083 53.92 3.05 0.018 0.049 20.04 – 0.96 84.03
TPD (kg m−3) 0.59 0.21 0.53 0.64 0.25 0.67 0.56 0.31 0.55 0.91 – 0.58 0.69
Area (Mha) 0.049 0.002 5 0.78 0.24 0.033 8.08 0.54 0.005 9 0.008 95 2.20 – 0.16 12.10

S400 0–20 TPS (Tg) – – 1.78 – 0.022 16.18 1.28 – 0.054 2.72 – – 22.04
TPD (kg m−3) – – 0.13 – 0.080 0.18 0.20 – 0.26 0.26 – – 0.18

0–100 TPS (Tg) – – 6.49 – 0.11 62.71 3.37 – 0.10 10.18 – – 82.96
TPD (kg m−3) – – 0.48 – 0.39 0.71 0.52 – 0.51 0.98 – – 0.70
Area (Mha) – – 1.34 – 0.28 8.85 0.64 – 0.021 1.04 – – 11.92

S1000 0–20 TPS (Tg) – – 3.26 – – 12.89 4.99 – – 2.33 – – 23.48
TPD (kg m−3) – – 0.15 – – 0.19 0.23 – – 0.24 – – 0.19

0–100 TPS (Tg) – – 13.08 – – 49.70 13.50 – – 10.43 – – 86.72
TPD (kg m−3) – – 0.59 – – 0.74 0.63 – – 1.07 – – 0.72
Area (Mha) – – 2.23 – – 6.70 2.16 – – 0.97 – – 12.06

of S400 (11%) and S1000 (14%) in TPS estimation. The
statistics showed that the red soil area in the S400 and S1000
maps reached 0.22 and 1.93 Mha, respectively, which were
larger than that in the other maps. Many studies showed that
the soil types with larger areas in larger-scale soil maps are
likely to bemajor components of smaller-scale soil map units,
while the soil types with small areas on larger-scale maps are
merged into other map units during the map generalization
process (Zhao et al., 2006; Xu et al., 2013).

The paddy soil in the S5 map accounted for 14.93% of
the total area in Fujian Province, which is the largest area in
agricultural soil (Table VI). The TPS of paddy soil based on
the S20, S50, and S1000 maps was much higher than that
based on the S5 map (Table VI), because the small polygons
of mountain meadow soil, fluvo-aquic soil, and coastal saline
soil were merged into paddy soils with larger polygons
as the map downscales. Statistics showed that the paddy
soil areas in the S20, S50, and S100 maps reached 2.00,
2.24, and 2.20 Mha, respectively, being higher than those in
other maps. Furthermore, the limestone soil, coastal saline

soil, and fluvo-aquic soil were not expressed in the S400 and
S1000 maps (Table V). Many studies also showed that spatial
patterns may change across scales, such that a variable may
be homogeneous at one scale but heterogeneous at another
(Xu et al., 2013). The geospatial soil data derived from the
S400 and S1000 maps contain implicit generalizations that
obscure the heterogeneities of soil properties.

Overall, the estimation based on different soil maps
showed divergent TPS estimates in different soil types. When
considering the accuracy of TPS estimation and the required
work hindered by the development of detailed soil maps at
the regional scale (e.g., S5), it is necessary to identify an
appropriate soil mapping scale as well as appropriate soil
types. Therefore, in this study, the S5 map was used as a
reference for comparison, where the appropriate mapping
scale was S20 for the skeleton soil, aeolian sandy soil,
paddy soil, and Entisol soil (Table VII). The most preferable
mapping scale was S50 for the fluvo-aquic soil, latosolic
red soil, red soil, and purplish soil, whereas S100 was the
optimum mapping scale for the coastal saline soil, yellow
soil, and mountain meadow soil (Table VII).
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TABLE VII

Most appropriate mapping scalesa) for soil total P storage (TPS) estimation at 0–20 and 0–100 cm soil depths over the whole region, different soil types, and
different administrative areas in Fujian Province, China

Item 0–20 cm 0–100 cm

S20 S50 S100 S400 S1000 S20 S50 S100 S400 S1000

Whole region
√b) √

Soil type
Coastal saline soil

√ √

Fluvo-aquic soil
√ √

Latosolic red soil
√ √

Skeleton soil
√ √

Aeolian sandy soil
√ √

Red soil
√ √

Yellow soil
√ √

Mountain meadow soil
√ √

Limestone soil
√ √

Paddy soil
√ √

Entisol
√ √

Purplish soil
√ √

Administrative area
Longyan

√ √

Nanping
√ √

Ningde
√ √

Putian
√ √

Quanzhou
√ √

Sanming
√ √

Xiamen
√ √

Zhangzhou
√ √

a)S20 = 1:200 000; S50 = 1:500 000; S100 = 1:1 000 000; S400 = 1:4 000 000; S1000 = 1:10 000 000.
b)The most appropriate mapping scale using the 1:50 000 mapping scale as a reference.

Effects of mapping scales on soil TPD and TPS estimation
in different administrative regions

Based on statistics of the S5 map, the soil areas within
different administrative regions, such as Fuzhou, Longyan,
Nanping, Ningde, Putian, Quanzhou, Sanming, Xiamen,
and Zhangzhou cities, were 1.19, 1.89, 2.61, 1.28, 0.37,
1.09, 2.27, 0.14, and 1.25 Mha, respectively. The TPS
and TPD estimations based on different mapping scales
varied dramatically for the same administrative region. The
highest TPD at 0–20 and 0–100 cm was found in the two
cities of Sanming (0.22 and 0.76 kg m−3, respectively) and
Longyan (0.21 and 0.82 kg m−3, respectively), since these
two cities are close to the Wuyi Mountains with relatively
low MAT and heavy rainfall. Table III shows the significant
positive/negative relationships between TPD in Sanming and
Longyan cities and MAP/MAT. As a result, low temperature
and heavy rainfall are beneficial to soil OM accumulation
in these two cities (Hobley et al., 2016). It is commonly
observed that soil TP content increases with increasing soil
OM content (Caione et al., 2021). The lowest soil TPD
at 0–20 cm was observed in Ningde City (0.11 kg m−3)
and at 0–100 cm in Putian City (0.41 kg m−3). The main
reason for this outcome was that the P fertilizer application
rates in Ningde and Putian cites were the lowest among
all the administrative areas (Fujian Provincial Bureau of
Statistics, 2016), and Putian City possessed a relatively

high temperature (20 ◦C) and low rainfall (1 424 mm).
Soil TPD in Ningde and Putian cities also had significant
positive relationships with MAP (Table III). Some studies
indicated that the rising air temperature leads to an increase
in soil temperature, which stimulates soil TP decomposition
(Wang et al., 2002). Additionally, low rainfall could result
in a decrease in crop biomass and consequently result in a
reduced return of crop residues to soil (Wu et al., 2011).

Soil TPD estimation in Ningde City was mostly impacted
by the changes in mapping scales (Table VIII). The relative
deviations at 0–20 and 0–100 cmwere 71.70% and 69.85% in
the S1000 map, respectively, which were the highest among
all the mapping scales. The main reason was that Ningde City
possessed 40 337 soil polygons and eight soil groups in the S5
map, whereas had just 24 soil polygons and three soil groups
in the S100 map (Table VI). In general, finer soil maps (e.g.,
the S5 map) would improve the accuracy of TPS and TPD
estimation effectively (Zhi et al., 2014). This was because
the soil database based on the S5 map provided relatively
the most detailed spatial and attribute information of TPD,
which would be the closest one for TPS estimation in Fujian
Province. However, the S5 soil map of the provincial-level
administrative region requires more labor force, material
resources, and financial support to collect and analyze soil
samples and edit them (Chen et al., 2018). Preparing such a
detailed soil database for the entire Fujian Province in a short
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TABLE VIII

Soil total P storage (TPS) and total P density (TPD) at 0–20 and 0–100 cm soil depths for different administrative areas based on soil databases at different
mapping scales, 1:50 000 (S5), 1:200 000 (S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and 1:10 000 000 (S1000), in Fujian Province,
China

Mapping scale Soil depth Item Fuzhou Longyan Nanping Ningde Putian Quanzhou Sanming Xiamen Zhangzhou Whole region

cm
S5 0–20 TPS (Tg) 1.92 4.00 4.32 1.47 0.61 1.41 4.92 0.22 1.85 20.72

TPD (kg m−3) 0.16 0.21 0.17 0.11 0.16 0.13 0.22 0.16 0.15 0.17
0–100 TPS (Tg) 7.99 15.56 19.31 5.78 1.50 4.84 17.29 0.90 7.81 80.98

TPD (kg m−3) 0.67 0.82 0.74 0.45 0.41 0.44 0.76 0.65 0.62 0.67
S20 0–20 TPS (Tg) 2.29 4.69 4.95 1.61 0.48 1.21 4.58 0.23 2.12 22.17

TPD (kg m−3) 0.19 0.25 0.19 0.12 0.13 0.11 0.20 0.17 0.17 0.18
0–100 TPS (Tg) 10.86 13.18 18.43 5.44 1.28 4.18 17.42 0.76 9.17 80.71

TPD (kg m−3) 0.92 0.70 0.71 0.42 0.35 0.38 0.77 0.55 0.74 0.67
S50 0–20 TPS (Tg) 2.53 4.68 4.50 1.58 0.85 1.41 5.24 0.32 1.96 23.06

TPD (kg m−3) 0.21 0.25 0.17 0.12 0.21 0.12 0.23 0.19 0.15 0.19
0–100 TPS (Tg) 7.79 18.71 17.89 6.69 2.19 5.16 18.06 0.80 7.73 85.00

TPD (kg m−3) 0.65 0.98 0.68 0.51 0.54 0.46 0.79 0.48 0.61 0.69
S100 0–20 TPS (Tg) 2.04 4.68 4.82 1.61 0.71 1.64 5.17 0.24 2.14 23.05

TPD (kg m−3) 0.18 0.25 0.18 0.13 0.19 0.15 0.23 0.16 0.17 0.19
0–100 TPS (Tg) 7.22 17.78 18.74 6.34 2.21 5.76 17.59 0.74 7.64 84.03

TPD (kg m−3) 0.64 0.93 0.71 0.49 0.58 0.52 0.77 0.49 0.61 0.69
S400 0–20 TPS (Tg) 2.06 3.84 5.37 2.08 0.48 1.74 4.25 0.20 2.04 22.04

TPD (kg m−3) 0.19 0.20 0.21 0.17 0.13 0.16 0.19 0.15 0.17 0.18
0–100 TPS (Tg) 7.95 14.66 19.11 8.64 1.76 6.29 15.96 0.70 7.90 82.96

TPD (kg m−3) 0.73 0.77 0.73 0.70 0.48 0.58 0.70 0.51 0.65 0.70
S1000 0–20 TPS (Tg) 2.31 3.87 5.67 2.51 0.57 1.74 4.64 0.23 1.94 23.48

TPD (kg m−3) 0.21 0.20 0.22 0.20 0.16 0.16 0.20 0.16 0.16 0.19
0–100 TPS (Tg) 8.34 14.32 19.54 9.74 2.01 6.79 16.89 0.93 8.16 89.72

TPD (kg m−3) 0.75 0.75 0.74 0.77 0.55 0.62 0.74 0.65 0.66 0.72

time would be impossible. In such a case, the S5 map should
be replaced by other mapping scales, which can guarantee
relatively high precision and cost less time and effort. To
avoid unnecessary complications, it is necessary to choose
the appropriate mapping scale rather than a more detailed
one. Table VII proposes other appropriate mapping scales
for different soil types and administrative areas in Fujian
Province using the most detailed S5 as a reference. Results
showed that in terms of the surface soil, S20 was suitable for
the skeleton soil, aeolian sandy soil, paddy soil, and Entisol,
S50 was appropriate for the fluvo-aquic soil, latosolic red
soil, red soil, and purplish soil, S100 was suitable for the
coastal saline soil, yellow soil, and mountain meadow soil,
and S400 was appropriate for the whole Fujian Province
and limestone soil. For the soil layer of 0–100 cm, relatively
suitable mapping scales were S20 and S50. Specifically, S20
was suitable for the whole region, coastal saline soil, skeleton
soil, paddy soil, and Entisol, and S50 was appropriate for
the fluvo-aquic soil, aeolian sandy soil, red soil, mountain
meadow soil, and purplish soil. For both soil layers of 0–20
and 0–100 cm, S1000 was too coarse to estimate TP, so we
should refrain from relying on it.

Considering the accuracy in estimating soil properties,
developing detailed maps at regional scales (e.g., S5) require
a great deal of effort and money, which often dissuades
scholars from adopting the most precise mapping scales.
As with all other mentioned available soil mapping scales,

S20 was the most popular for a variety of scientific research
studies. Behrens and Scholten (2006) reviewed that more
than 75% of German territory is covered by small-scale
soil maps, including a particular interesting soil mapping
scale at S20 since it was created through the joint effort of
the federal states and the Federal Institute for Geosciences
and Natural Resources, which comprises a standardized
legend and an underlying soil database (Eckelmann, 2005).
Balamirzoev et al. (2008) also adopted the S20 mapping
scale to analyze the ecological status of the soil cover of
the Dagestan Republic and suggested measures for nature
protection and rational land use. Yermolaev (2017) analyzed
the soil erosion data at S20 of the Middle Volga region based
on geoinformation mapping. Zhang et al. (2016) drove the
DeNitrification-DeComposition model to quantify soil OC
dynamics for the period between 2001 and 2019 at different
mapping scales and found that the soil mapping scale of S20
provided the best accuracy in the Tai-Lake region (China)
based on the most detailed soil map (S5) as a reference. In
addition, the S20 soil mapping scale has been widely used
at the provincial level by some domestic scholars as well.
For example, Yu et al. (2008) used the S20 map and soil
dataset to estimate soil OC storage and density in Henan
Province, China; Shen et al. (2005) analyzed the distribution
characteristics of soil fertility along rivers in Jiangsu Province
(China) based on the S20 soil mapping scale. In our study,
S20 was appropriate for paddy soil (Table VII), the dominant
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cultivated soil type in Fujian Province. Additionally, we
discovered that S20 provided more soil information and an
even richer soil environment than the smaller mapping scales,
with higher accuracy from a time and labor perspective. Since
almost all basic soil mapping scales of China were involved,
we believe that the knowledge achieved in this study can
be used in other regions of eastern China. It might provide
new insight into the adoption of appropriate soil mapping
scales for defining the implementation of government policies
designed to optimize agricultural management practices.

Differences in multi-scale soil TP estimation results

Soil properties varywidelywhen using differentmapping
scales, which is mainly influenced by the generalization effect
of soil maps in the process of mapping (Xu et al., 2013;
Zhang et al., 2019). Hence, the generalization will affect the
attribute information of the soil map spots. The results of
the soil mapping generalization are mutual across distinct
soil types, resulting in a decrease in the soil type and a
change in the distribution area of each soil type. The area of
upland soils at the mapping scales of S20, S50, S100, S400,
and S1000 changed significantly with mapping downscaling
(Fig. 7). The areas of the coastal saline soil, fluvo-aquic
soil, and skeletal soil changed the most, where they reached
around 1.13% of the total area in the S5 map, but were
merged into other soil types in the S400 and S1000 maps.
In addition, the red and paddy soils, which were the most
widely distributed soil types and accounted for 86.33% of the

total soil area in the S5 map, showed a relative area deviation
of 2.56%–22.33% and 10.69%–46.08%, respectively, with
mapping scales downscaling from S20 to S1000 compared to
S5. These changes had a significant impact on the estimation
of TPD and TPS.

The areas of the red soil, the main soil type in Fujian
Province, were 7.08 × 104, 6.80 × 104, 6.86 × 104, 7.03 ×
104, and 5.39 × 104 ha, retaining on the smaller mapping
scales with downscaling from S5 to S20, S50, S100, S400,
and S1000, respectively. Therefore, there were 1.54 × 104
(S20), 1.83× 104 (S50), 1.76× 104 (S100), 1.59× 104, and
3.24× 104 (S1000) ha red soil area converted into other soil
types on their correspondingmapping scales. Meanwhile, the
overall number of soil types decreased as mapping scales got
coarser, so substantial variances emerge among various soil
types within different soil maps (Zhao et al., 2006). Some
studies also indicated that soil area variations from modeling
errors were related to soil mapping scales, particularly for
soil area missing small soil types in coarse soil maps, which
can lead to higher sensitivity to changes in soil properties
(Xu et al., 2013). In addition, the number of soil profiles
applied to derive soil properties had a great variation among
different maps (Table I), which leads to a higher probability
of having discrepancies in soil properties among these six
mapping scales.

The generalization effect leads to uncertainty in the
assignment process of mapping soil polygons at different
mapping scales. The number of soil profiles was markedly
affected by different soil mapping scales on the regional

Fig. 7 Contribution percentages of soil type areas to the changes in red soil areas with mapping scales downscaling from 1:200 000 (S20) to 1:500 000
(S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and 1:10 000 000 (S1000) compared to 1:50 000 (S5), in Fujian Province, China. 1= coastal saline soil; 2=
fluvo-aquic soil; 3 = latosolic red soil; 4 = skeletal soil; 5 = aeolian sandy soil; 6 = yellow soil; 7 = mountain meadow soil; 8 = limestone soil; 9 = paddy
soil; 10 = Entisol; 11 = purplish soil.
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scales. The number of soil profiles corresponding to each
map location was minimal because of the big number of
polygons in soil maps having a small area, and the soil
classification level according to its basic mapping unit was
low (such as soil genus). However, when the scale of the soil
map was small, the soil classification level corresponding
to its basic mapping unit was high (such as soil group), and
the number of soil polygons was small and the area was
large (Fig. 8). For example, the S400 and S1000 soil maps
had only 440 and 345 soil polygons, respectively. The soil
information uncertainty derived from the soil polygons was
increased as a result of the rising profile spot numbers when
connected using the PKB method. Therefore, the difference
in soil TPD obtained from maps at different scales, coupled
with changes in the area of each soil type map during the
cartographic generalization process, significantly influenced
the estimation of regional TPS.

Fig. 8 Spot generalization of soil in Fujian Province, China at mapping
scales from 1:50 000 (S5) to 1:200 000 (S20), 1:500 000 (S50), and
1:1 000 000 (S100).

CONCLUSIONS AND FUTURE PERSPECTIVES

Soil TP estimation using different scales of soil map
databases has significant implications for agricultural ma-
nagement and ecosystem protection. In this study, we ana-
lyzed the scale influence on soil TP using six soil mapping
scales in a large region with slope-rich and complex topog-
raphy. The soil map at the S5 mapping scale was used as
a reference because it included detailed information. The
results showed that the relative deviations of the regional
soil TPS derived from the S20, S50, S100, S400, and S1000
maps were 7.00%, 11.23%, 11.25%, 6.37%, and 13.32%,
respectively, for the 0–20 cm soil depth. The corresponding

relative deviations were 0.33%, 4.96%, 3.77%, 2.45%, and
7.09%, respectively, for the 0–100 cm soil depth. The map-
ping scales of S400 and S1000 were improper for estimating
soil TPD in Fujian Province due to the high relative devia-
tions for different administrative areas (i.e., 0.56%–70.29%)
and soil types (i.e., 11.29%–396.35%). The S20 mapping
scale had the lowest relative deviation for the 0–20 cm soil
(7.20%) and 0–100 cm soil (0.14%). We suggest using the
soil mapping scale of S20 to replace S5 for soil TP estimation
in Fujian Province due to the long processing time and the
needed work hampered by the construction of comprehen-
sive soil maps at the regional scale. Our findings provide a
guideline for the selection of appropriate mapping scales to
accurately estimate soil TP in a large region with slope-rich
and complex topography.

We selected DCSM in our analysis because it includes
information on the spatial distribution of a wide variety
of soil properties inferred from representative soil profile
descriptions associated with the map units. However, DSM
often employs reproducible and easy-to-update quantitative
models that relate field observations of soil type or property
to spatially comprehensive environmental data (Kempen
et al., 2012). As a result of the increased development and
implementation of DSM, we are exploring using DSM to
update our research in the next step.
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