Ecosystems & Biogeochemical Dynamics Laboratory - Data Dissemination - Department of Earth, Atmospheric, and Planetary Sciences - Purdue University Skip to main content

Data Dissemination

The following data are citable and downloadable from Purdue University Research Repository.

  1. Xu, Y., Q. Zhuang, B. Zhao, M. Billmire, C. Cook, J.A. Graham, N.H.F. French, and R. Prinn. 2024. Impacts of Wildfires on Boreal Forest Ecosystem Carbon Dynamics. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/2359

  2. Zhuang, Q.; Xu, Y. (2023). Wildfires shift a cumulative carbon sink to a source for boreal forest ecosystems in North America from 1986 to 2020. Purdue University Research Repository. doi:10.4231/GJ6M-7259

  3. Yuan, Y.; Zhuang, Q.; Zhao, B.; Shurpali, N. J. (2023). Modeling N2O emission from the pan-Arctic terrestrial ecosystems. Purdue University Research Repository. doi:10.4231/KZ5W-DC21

  4. Lee, J.; Oh, Y.; Kang, H.; Zhuang, Q. (2023). Code and Model results for Soil organic carbon is a key determinant of CH4 sink in global forest soils. Purdue University Research Repository. doi:10.4231/8K7W-NF84

  5. Zhao, B.; Zhuang, Q. (2023). Weakening cooling effect of northern peatlands on the global climate system during the 21st century. Purdue University Research Repository. doi:10.4231/BB7M-HN65

  6. Xi, X.; Zhuang, Q.; Kim, S.; Zhang, Z. (2023). Methane emissions from land and aquatic ecosystems in Western Siberia: An analysis with methane biogeochemistry models. Purdue University Research Repository. doi:10.4231/80RV-X686

  7. Zhuang, Q.; Guo, M. (2023). A process-based biogeochemistry model and analysis for current and future global lake methane emissions. Purdue University Research Repository. doi:10.4231/67YG-V518

  8. Guo, M.; Zhuang, Q. (2023). Linking biogeochemical and hydrodynamic processes to model methane fluxes in shallow, tropical floodplain lake. Purdue University Research Repository. doi:10.4231/4WN4-S032

  9. Zhuang, Q., Liu, X. (2022). Methane emissions from Arctic landscapes during 2000-2015: An analysis with land and lake biogeochemistry models. Purdue University Research Repository. doi:10.4231/SJC1-9F83

  10. Zhuang, Q., Xu, Y. (2022). The importance of interactions between snow, permafrost and vegetation dynamics in terrestrial carbon balance in circumpolar regions. Purdue University Research Repository. doi:10.4231/E1AD-DB33

  11. Zhao, B., Zhuang, Q. (2022). Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: A process-based biogeochemistry model analysis. Purdue University Research Repository. doi:10.4231/QP7V-V527

  12. Zhao, B., Zhuang, Q., Frolking, S. (2022). Modeling carbon accumulation and greenhouse gas emissions of northern peatlands since the Holocene. Purdue University Research Repository. doi:10.4231/6647-C769

  13. McGuire, D.A., D.M. Lawrence, C.D. Koven, J.S. Clein, E. Burke, G.S. Chen, E. Jafarov, A.H. MacDougall, S. Marchenko, D.J. Nicolsky, S. Peng, A. Rinke, P. Ciais, I. Gouttevin, D.J. Hayes, D. Ji, G. Krinner, J.C. Moore, V.E. Romanovsky, C. Schädel, K. Schaefer, and Q. Zhuang. 2022. Projections of Permafrost Thaw and Carbon Release for RCP 4.5 and 8.5, 1901-2299. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1872

  14. Zhao, B., Zhuang, Q., Treat, C., stevef@guero.sr.unh.edu (2022). A model intercomparison analysis for controls on C accumulation in North American peatlands. Purdue University Research Repository. doi:10.4231/982H-T007

  15. Xi, X., Gentine, P., Zhuang, Q., Kim, S. (2021). Evaluating the variability of surface soil moisture simulated within CMIP5 using SMAP data. Purdue University Research Repository. doi:10.4231/A0QC-7E03

  16. Guo, M., Zhuang, Q., Melack, J., Lan, X., Tan, Z., Oh, Y., Leung, L. R. (2021). Current and projected global lake methane emissions by mechanistic modeling. Purdue University Research Repository. doi:10.4231/JZ10-FH54

  17. Liu, L., Zhuang, Q., Zhao, D., Zheng, D., Kou, D., Yang, Y. (2021). Data for Permafrost Degradation Diminishes Terrestrial Ecosystem Carbon Sequestration Capacity on the Qinghai-Tibetan Plateau. Purdue University Research Repository. doi:10.4231/03FM-XN05

  18. Guo, M., Zhuang, Q., Yao, H., Golub, M., Leung, L. R., Tan, Z. (2020). Data for Intercomparison of thermal regime algorithms in 1-D lake models. Purdue University Research Repository. doi:10.4231/8246-C724

  19. Guo, M., Zhuang, Q., Yao, H., Golub, M., Leung, L. R., Tan, Z. (2020). Data for Validation and Sensitivity Analysis of a 1-D Lake Model across Global Lakes. Purdue University Research Repository. doi:10.4231/NPYJ-GE58

  20. Zhuang, Q., Wang, S., Zhao, B., Aires, F., Prigent, C., Yu, Z., Keller, J. K., Bridgham, S. (2020). Modeling Holocene Peatland Soil Carbon Accumulation in North America. Purdue University Research Repository. doi:10.4231/8GEV-2P56

  21. Zhao, B., Zhuang, Q., Pumpanen, J., Shurpali, N. (2020). North American boreal forests are a large carbon source due to wildfires from 1986 to 2016. Purdue University Research Repository. doi:10.4231/TSK3-1733

  22. Guo, M., Zhuang, Q., Tan, Z., Shurpali, N., Juutinen, S., Kortelainen, P., Martikainen, P. (2020). Rising methane emissions from boreal lakes due to increasing ice-free days. Purdue University Research Repository. doi:10.4231/FYFN-1Z68

  23. Oh, Y., Zhuang, Q., Liu, L., Welp-Smith, L. R., Lau, M. C., Onstott, T. C., Medvigy, D., Bruhwiler, L., Dlugokencky, E. J., Hugelius, G., D'Imperio, L., Elberling, B. (2020). Code and Data for Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Purdue University Research Repository. doi:10.4231/Q3R8-SZ17

  24. Zha, J., Zhuang, Q. (2019). Microbial decomposition processes and vulnerable arctic soil organic carbon in the 21st century. Purdue University Research Repository. doi:10.4231/ANMV-J384

  25. Liu, L., Zhuang, Q. (2019). Global CO Dynamics Model Output during 1901-2100. Purdue University Research Repository. doi:10.4231/JGZ8-9C75

  26. Liu, L., Zhuang, Q. (2019). Global Methane Fluxes from Wetland using Mechanistically-based Biogeochemistry Model. Purdue University Research Repository. doi:10.4231/W1M6-4651

  27. Natali, S., J.D. Watts, S. Potter, B.M. Rogers, S. Ludwig, A. Selbmann, P. Sullivan, B. Abbott, K. Arndt, A.A. Bloom, G. Celis, T. Christensen, C. Christiansen, R. Commane, E. Cooper, P.M. Crill, C.I. Czimczik, S. Davydov, J. Du, J. Egan, B. Elberling, S.E. Euskirchen, T. Friborg, H. Genet, J. Goodrich, P. Grogan, M. Helbig, E. Jafarov, J. Jastrow, A. Kalhori, Y. Kim, J.S. Kimball, L. Kutzbach, M. Lara, K. Larsen, B. Lee, Z. Liu, M.M. Loranty, M. Lund, M. Lupascu, N. Madani, A. Malhotra, R. Matamala, J. McFarland, A. McGuire, A. Michelsen, C. Minions, W. Oechel, D. Olefeldt, F. Parmentier, N. Pirk, B. Poulter, W. Quinton, F. Rezanezhad, D. Risk, T. Sachs, K. Schaefer, N. Schmidt, E. Schuur, P. Semenchuk, G. Shaver, O. Sonnentag, G. Starr, C. Treat, M. Waldrop, Y. Wang, J. Welker, C. Wille, X. Xu, Z. Zhang, Q. Zhuang, and D. Zona. 2019. Synthesis of Winter In Situ Soil CO2 Flux in pan-Arctic and Boreal Regions, 1989-2017. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1692

  28. Liao, C., Zhuang, Q., Leung, R., Guo, L. (2019). Quantifying Dissolved Organic Carbon Dynamics Using a Three-Dimensional Terrestrial Ecosystem Model at High Spatial-Temporal Resolutions. Purdue University Research Repository.doi:10.4231/7YY6-HQ02

The following is a list of data collected for the various studies conducted within the Ecosystems and Biogeochemical Dynamics Laboratory (EBDL) at Purdue; these datasets can be provided to interested parties. Due to the large volume of data, please direct all data-related requests to the contact author of the relevant paper in our lab to arrange the data delivery. The author contact information may be found in our personnel section of this web.

  1. Natali, S., J.D. Watts, S. Potter, B.M. Rogers, S. Ludwig, A. Selbmann, P. Sullivan, B. Abbott, K. Arndt, A.A. Bloom, G. Celis, T. Christensen, C. Christiansen, R. Commane, E. Cooper, P.M. Crill, C.I. Czimczik, S. Davydov, J. Du, J. Egan, B. Elberling, S.E. Euskirchen, T. Friborg, H. Genet, J. Goodrich, P. Grogan, M. Helbig, E. Jafarov, J. Jastrow, A. Kalhori, Y. Kim, J.S. Kimball, L. Kutzbach, M. Lara, K. Larsen, B. Lee, Z. Liu, M.M. Loranty, M. Lund, M. Lupascu, N. Madani, A. Malhotra, R. Matamala, J. McFarland, A. McGuire, A. Michelsen, C. Minions, W. Oechel, D. Olefeldt, F. Parmentier, N. Pirk, B. Poulter, W. Quinton, F. Rezanezhad, D. Risk, T. Sachs, K. Schaefer, N. Schmidt, E. Schuur, P. Semenchuk, G. Shaver, O. Sonnentag, G. Starr, C. Treat, M. Waldrop, Y. Wang, J. Welker, C. Wille, X. Xu, Z. Zhang, Q. Zhuang, and D. Zona. 2019. Synthesis of Winter In Situ Soil CO2 Flux in pan-Arctic and Boreal Regions, 1989-2017. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1692

  2. Land productivity at 0.5 x 0.5 (longitude x latitude) grid-cell level using a process-based biogeochemistry model, the terrestrial ecosystem model (TEM) calibrated for a C4 crop (Taheripour et al., 2013).

  3. Model simulations of carbon fluxes of the forest ecosystems of the conterminous United States for the 21st century under the future Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) climate scenarios A1FI, A2, B1 and B2 by considering plant photosynthesis acclimation effects (Chen and Zhuang, 2013).

  4. The TEM simulated carbon fluxes (NPP, GPP and NEP) of Chinese temperate grasslands during 1951?2007 at a 0.5o x 0.5 resolution and monthly time step (Sui et al., 2012).

  5. Model simulated soil temperature and moisture data for 11 sites in arctic and subarctic Alaska with a coupled heat and water dynamics model(Jiang and Zhuang, 2012).

  6. Methane emissions from the Yukon River basin at a spatial resolution of 1 km and 1 day time step from 1986 to 2005 simulated with TEM (Lu and Zhuang, 2012).

  7. Carbon fluxes of the conterminous U.S. Simulated with TEM and a spatially explicit parameterization method at 0.5 x 0.5 degree resolution and monthly time step for the 20th century (Chen and Zhuang, 2012).

  8. LPJ simulations of vegetation distribution driven with IPCC and MIT-IGSM climate scenarios for the 21st century in northern high latitudes (Jiang et al., 2012a)

  9. The fire probability that the annual burned area is larger than or equal to 3,000 km2 in each Canadian ecozone, projected with a Poisson model (Jiang et al., 2012b).

  10. TEM simulated monthly net methane emissions with three wetland extent datasets across Northern Eurasia at 0.5 x 0.5 degree spatial resolution during the 1990s and this century(Zhu et al., 2011).

  11. Simulated monthly net primary production and net ecosystem exchange of biofuel crops grown on marginal agricultural land in China, as determined by TEM (Qin et al., 2011).

  12. Annual and monthly soil N2O emissions under natural vegetation in year 2000 estimated with a neural network approach (Zhuang et al., 2011).

  13. Carbon dynamics in corn, soybean, wheat, switchgrass and Miscanthus agroecosystems in the conterminous United States for the period 1900-1999 under six land use change scenarios and three separate crop scenarios (Qin, Zhuang & Chen 2011). The data include monthly net primary production (NPP) and net ecosystem production (NPP) for the study period.

  14. Monthly net ecosystem production (NEP), gross primary production (GPP) and net primary production (NPP) of the conterminous United States for the period 2000-2005 with a satellite-data based Terrestrial Ecosystem Model (TEM) simulation (Chen et al. 2011).

  15. Landsat-based land cover data in the Yukon River Basin for the periods 1984-1989, 1990-1995, 1996-2001, 2001-2003 at an 1km resolution (Lu and Zhuang, 2011).

  16. 8-day time-step net ecosystem carbon exchange data for the conterminous US from February 2000 to December2006, developed using eddy flux data in the US (Xiao et al. 2011).

  17. Atmospheric CH4 concentration distribution data over Alaska and Siberia for the period 2004-2005 based on AIRS retrieval (Xiong et al. 2010).

  18. Carbon dynamics across the Arctic Basin (land-atmosphere CO2 and CH4 exchange, the transfer of land-based C to the Arctic Ocean, and ocean-atmosphere CO2 exchange) for the period 1997-2006 (McGuire et al. 2010).

  19. Permafrost status (soil temperature profile) and carbon cycling including monthly NEP, NPP and GPP on the Tibetan Plateau for the period 1940-2000 (Zhuang et al. 2010).

  20. Daily evapotranspiration (ET) product for the conterminous US for the period 2004-2005 developed using MODIS data (Lu & Zhuang 2010).

  21. Biomass potential (NPP) and carbon balance (NEP) of the Midwest of the US for the period 1948-2099 estimated with TEM (Lu & Zhuang 2010).

  22. 8-day time-step gross primary productivity (GPP) for the conterminous US for the period 2000-2004 developed using eddy flux measurements in the US (Xiao et al. 2010).

  23. Projected recurrence interval of wildfires in Canadian boreal ecosystems from 1980-1999 (Jiang et al. 2009).

  24. Carbon fluxes (NEP, NPP) on the Mongolian Plateau from 1901-2100 (Lu et al. 2009).

  25. Monthly carbon fluxes (NEP and NEP and soil respiration) in China including drought data for the period 1901-2002 (Xiao et al. 2009).

  26. Spatial patterns and magnitudes of NPP for different forest ecosystem types and sub-regions across China for the period 1901-2002 developed using spatial statistical method and process-based modeling (Zhuang et al. 2008).

  27. Annual gridded fire occurrence (burned area) over Canada and Alaska for the period 1959-1999 (Xiao & Zhuang 2007).

  28. The effect of CO2 fertilization on carbon storage, the effect of climate on carbon storage, and the effect of fire disturbances on carbonstorage in boreal North America for the period 1959-2002 and for the pan-boreal region for the period 1996-2002 (Balshi et al. 2007).

  29. Monthly net methane fluxes (regional emissions and consumption) between Alaskan ecosystems and the atmosphere for the period 1922-2099 (Zhuang et al. 2007).

  30. Monthly carbon dioxide and methane exchanges between land ecosystems and the atmospheric in the Northern High Latitudes for the twenty-first century for three different climate scenarios, both with and without consideration of CO2 fertilization (Zhuang et al. 2006).

  31. Snow cover, permafrost stability and soil freeze-thaw transitions in the Northern high latitudes for the period 1960-2100 (Euskirchen et al. 2006).

  32. Global carbon emissions for the period 1960-1995 under four different ozone and greenhouse gas emission scenarios, both with and without consideration of ozone effects and CO2 fertilization (Felzer et al. 2005).

  33. Monthly methane emission and consumption rates in the northern high latitudes for the period 1900-2000 (Zhuang et al. 2004).

  34. Net primary production and carbon sequestration across the conterminous United States for the period 1860-1995 considering ozone effects (Felzer et al. 2004).

  35. Monthly NEP and NPP considering the effects of CO2 fertilization, climate variability, land use change, and soil thermal dynamics for the period 1860-1995 (Zhuang et al. 2003).

  36. Carbon budgets (NEP) of boreal forest in the interior Alaska for theperiod 1954-1998 considering fire disturbance (Zhuang et al. 2002).